Message from the Chair

David A. Kofke

I am truly excited to be announcing to you the launch of an initiative that will boost the CBE department’s reputation and improve our teaching and research facilities: we are creating the Ruckenstein Fund as an endowment to recognize and honor Professor Eli Ruckenstein, whose contributions to our department will be felt for generations to come.

Eli’s unassuming demeanor belies an extraordinary life story, a story that should be an inspiration to us all. It is very much a tale of self-made success, in which Eli’s passion for knowledge drove him to overcome incredibly daunting circumstances to reach the pinnacle of the engineering profession. We recount his amazing journey inside this newsletter.

Those of us who work with Eli every day are charmed when we let slip a casual greeting, “How’re you doing today?” Invariably, after a long pause of reflection, Eli responds, “That is a complicated question.” As you can see, Eli takes nothing for granted, and perhaps that is an ingredient in his success.

And truly, Eli’s accomplishments are staggering. He has authored over 1000 refereed journal articles in every conceivable area of interest to chemical engineering (including thermodynamics, transport, catalysis, materials, and bioengineering). Remarkably, a graph of his productivity versus age, starting from age 60 and covering the past 20 years, has a positive slope!

To frame this in a more familiar way, you may reflect on UB’s efforts over recent years to develop a presence in Division I athletics. This is a laudable endeavor, as it can help to put UB into the national consciousness in a positive way. But looked at in this context, we should realize that in Eli Ruckenstein we already have the academic equivalent of a Heisman Trophy winner, or a Hall of Fame athlete. And this is not just someone associated to UB as a whole, but he is an emblem of the very department where you studied to earn your degree!

Eli has won every major recognition available to chemical engineers, and more. He is a member of the National Academy of Engineering, the academic “Hall of Fame” (in fact he has received the Academy’s Founder’s Award, which recognizes him as the crème de la crème of engineering), and he is a 1998 recipient of the very prestigious National Medal of Science (and only the 3rd chemical engineer to be accorded this honor, which dates back to 1959). Eli has been described to me by a leading chemical engineer as “the closest thing to true genius that we have in the profession.” Eli Ruckenstein is a genuine academic all-star, and we have much reason to be proud of him.

Even students who don’t have Eli for class, or study under his guidance, benefit from his presence in our department. To again borrow a sports metaphor, Eli’s qualities make everyone else’s game better. He heightens the intellectual atmosphere of the entire department, and his example drives us all to be the best teachers and scholars that we can be. Whether you worked with him or not, the quality of the education you received at UB was greatly impacted by Eli’s presence here.

So what do we want to do with this endowment? First, we will use it to enable the best and brightest in chemical engineering to visit us. This is one of the best ways we have for others to learn how good we and our students are. When we bring national leaders here for a day or two to visit, they learn many more things about us than they can by just reading a brochure. They spend a lot of time with faculty and students, and they take this impression with them, and in this way are encouraged to tell others about the good things here at Buffalo. Eli has for a long time served as coordinator of our seminar series, so this is a fitting use of a fund developed in his name.

Eli also recognized the importance of a good laboratory, and what could be accomplished with high-quality, modern equipment. Accordingly we would use this fund also to help support our laboratories, including our undergraduate laboratory (which is often a target of suggestions for equipment improvements!).

If you have ever considered giving to your alma
matter, this is a great time to do so. Indeed, I am very happy to report that the UB School of Engineering and Applied Sciences has committed to a dollar-for-dollar match of all contributions to the Ruckenstein Fund, up to a total of $50,000. So any support you give to this cause will have double the impact!

So I call on you to join me and the CBE faculty to build this endowment to honor Eli Ruckenstein, and in this manner enrich future generations of students in our department. The Ruckenstein name has brought honor and respect to our department from across the nation, and we want to ensure that he is remembered in perpetuity for all he has done for UB and Buffalo and, equally, for all that UB has done to enable his accomplishments. I hope you will help to make this happen.

You can pledge support to the Ruckenstein Fund online at giving.buffalo.edu/ruckensteinfund, or you can send a payment to the attention of Tim Siderakis at 412 Bonner Hall, Buffalo, NY 14260-1900. All checks should be made payable to UB Foundation, Inc. and be noted that it is for the “Ruckenstein Fund”. If you have any questions or suggestions of other possible contributors, please contact our development office at 888-205-2609. Tim, Mike or Jenine would be happy to speak with you. •

Welcome New Faculty

Dr. Michael E. Cain joined the University at Buffalo as the Dean of the School of Medicine and Biomedical Sciences in November 2006. In the Spring of 2007, he joined the faculty of the CBE department as professor.

Cain is the former Director of the Cardiovascular Division and Tobias and Hortense Lewin Professor of Medicine at Washington University School of Medicine in St. Louis. A cardiologist who specializes in cardiac electrophysiology, the examination of the heart’s electrical system, he also was professor of biomedical engineering at Washington University.

A cum laude graduate of Gettysburg College, Cain received his medical degree from George Washington University School of Medicine in Washington, DC. He completed his training in internal medicine at Barnes Hospital/Washington University School of Medicine in St. Louis. His postgraduate training in cardiovascular diseases included appointments as a research fellow, clinical cardiology fellow and research instructor, all in the Cardiovascular Division at Washington University School of Medicine. He also served as a clinical/ research fellow in the Clinical Cardiac Electrophysiology Laboratory at the University of Pennsylvania School of Medicine in Philadelphia.

Cain joined the Washington University School of Medicine faculty in 1981 as an assistant professor of medicine, was promoted to associate professor in 1987, and in 1993, he was promoted to professor of medicine and named the director of the Cardiovascular Division. He has been the Tobias and Hortense Lewin Professor of Medicine since 1994, and a professor of biomedical engineering since 1999. Cain also is president of the board of directors of the Heart Care Institute, as well as director of arrhythmia services, for the Washington University School of Medicine, Barnes-Jewish Hospital in St. Louis.

His research has been directed at determining the electrophysiological and structural determinants of ventricular tachycardia and fibrillation in the setting of healed myocardial infarction or cardiomyopathy to improve nonpharmacological procedures for arrhythmia ablation by characterizing and localizing the tissue critical to arrhythmogenesis, and to provide the pathophysiological foundation needed to refine methods of ECG analysis that will improve the identification of patients at risk for sudden cardiac death. His research has been funded consistently by the National Institutes of Health since 1984.

Cain is the recipient of numerous honors and awards, and is the co-author (with B.E. Sobel and P.R. Eisenberg) of a book entitled, Medical Management of Heart Disease, (Marcel Dekker, Inc., 1996). He has authored or co-authored more than 80 peer-reviewed manuscripts, and more than 50 invited publications. •

In August 2007, Dr. Chong Cheng joined our faculty as assistant professor. His research at UB focuses on the development of synthetic methods for the preparation of novel functionalized biodegradable polymers and nanostructures, which can further serve as useful scaffolds for biomedical and bioengineering applications, especially targeted drug delivery and tissue engineering.

From 2003 to 2007, Cheng worked at Washington University in Saint Louis as a postdoctoral associate, performing research on the design, synthesis, and characterization of new polymers and polymeric nanomaterials. He made critical contributions in establishing a new synthetic method of polymeric nano-objects based on selective crosslinking of brush copolymers. He also made key contributions in the development of new and facile methods for the preparations of brush copolymers, hyperbranched fluorocopolymers, and well-defined photodegradable vinyl ketone-based polymers.

Cheng obtained his PhD in Chemistry (Polymer) in 2003 from the City University of New York, where he conducted research on the synthesis of nanostructured polymers by strategic combination of a variety of living polymerization techniques. He received his initial education in China. He earned a Master’s degree in Polymer Materials in 1996 from Beijing University of Chemical Technology and a Bachelor’s degree in Polymer Materials in 1993 from Hefei University of Technology. •

(Continued on page 5)
Over many years, Eli Ruckenstein’s prolific and imaginative research has advanced theories in transport phenomena, interfacial phenomena, catalysis, colloidal forces, polymers, surfactants, materials, and countless other diverse areas of chemical engineering and science. His inspirational story is one of great difficulties but also of great satisfaction. In fact, Eli believes that joy and pain are mixed not only in life but also in scientific research, because you cannot come to the joy of rewarding new research without the painful process of discovering new questions and developing ideas in order to solve them.

Early Years

Eli Ruckenstein was born in Botosani, a small agricultural town in northern Romania. His family was well off until they lost everything in the Great Depression. This meant that in his formative years he had to struggle and fight poverty.

He began school at seven but at fourteen he was expelled due to racial laws. The Jewish community responded by organizing a private high school where the teachers were intellectuals who loved their jobs and, although without the necessary credentials, made schooling interesting and exciting.

In his last two years of high school, he was taken into forced labor six days a week from 5 a.m. to 5 p.m. His task was to carry bricks on a scaffold all day. Although he was out of school, he studied by himself and took exams at the end of each of these two years. At this time he fell in love with mathematics, which he learned by himself, and in this way he laid the educational foundation for the rest of his future studies.

In 1944, the year when the Russian troops entered Romania and when the fascist government was replaced by a communist regime, Eli arrived in Bucharest in order to enter the University. He imagined this institution as a temple of learning, but when he reached the Polytechnic Institute, which was the School of Engineering, he was disappointed to find military types of buildings. He was also disoriented in choosing a profession. His interests were in mathematics, chemistry and physics. A family friend guided him towards chemical engineering as a way to bring all these fields together. In order to enter the Polytechnic Institute he had to take competitive exams because there were 400 candidates vying for 20 places. He was among the successful ones, and he received his degree in 1949. Although the education was free in Romania, even at the University level, Ruckenstein suffered hunger through all his student years, and many times he didn’t have money for a streetcar ticket, so he had to walk long distances.

These hardships did not diminish his perseverance. Finding the classes boring, he spent his time in the library reading at random. He read every journal in his field, understanding some of the papers and not understanding others (he wouldn’t recommend this way of studying to anyone). When he took his final exams in Chemical Engineering, he met Professor Emil Bratu, who became his mentor and of whom he keeps fond memories.

In 1948 Eli married Velina Rothstein, an event he describes as the best thing he has ever done. He credits his wife with having a tremendous influence on his academic goals. By profession a chemist, she worked in a research institute and most of the time she earned more money than he did as an academic.

The Start of an Incredible Career

In 1949 Eli secured a position of Assistant Professor at the Polytechnic Institute in the Department of Chemical Engineering, which was quite a miraculous occurrence considering that he was not a member of the Communist party. Still, because he was not part of the ruling party it took him 15 years to be promoted to associate professor.

Before 1958 Romanian scientists were not allowed to
send papers to the West for publication. When this rule was changed Eli’s work reached an international audience, and as a result he became known outside Romania. In 1969 he was invited to spend six weeks in London at the University College and Imperial College.

Escape from the Iron Curtain

When he returned home, there were letters from the University of Minnesota and Clarkson University inviting him to the U.S. The University of Minnesota wanted him to make arrangements through the Romanian Academy of Science. This suggestion was not viable because of the policy of the Romanian government which controlled all institutions, including the Academy, and which was discriminating against persons who were not members of the Communist Party.

Clarkson University had received a grant from the National Science Foundation for a visiting European scientist. This allowed Eli to bypass the Romanian Academy, and consequently he spent one academic year at Clarkson. Subsequently, in 1970, he received a permanent position as Full Professor with tenure at the University of Delaware.

It was not easy for Eli to acclimate to new ways and a new atmosphere, but his American colleagues were very friendly and helpful. Beside the need to accommodate to new ways, he had to deal with an extremely difficult family problem. While his wife was allowed to accompany him to the United States, his two children were not allowed to leave Romania, in order to compel him to come back. In a way it was like keeping these two minor children (ages 12 and 14) as hostages. It took two years of effort to get the children out from behind the Iron Curtain, and in this process, his colleagues at the University of Delaware, particularly Art Metzner, were of the greatest help. Their son, Andrei, is now a professor of physics at Boston University and their daughter, Lelia, is a literary critic and a writer.

Move to UB

In 1971 Professor William Gill, Eli’s former chair at Clarkson, moved to UB as Dean of the Engineering School. He encouraged Eli to move to Buffalo as well, and from 1973 to the present he has been a faculty member in our department. In these thirty-five years he has educated and influenced many students and he has generated vast amounts of new knowledge. His name in the profession has led him to become almost a national icon for the department. Indeed when any of us travel to other universities the number of inquiries about him is second only to the question of whether we get a lot of snow in Buffalo! (you can imagine which of these two we never tire of answering).

Eli is a voracious reader and a true intellectual. He converses easily on world history, politics, and the history of science and engineering. He has deep knowledge of the course that scientific progress has taken, and he is well versed in the lives and the specific contributions made by many of the great minds that preceded us. He has a bibliographic memory, and is often able to cite his own and others’ contributions to a specific area made as long as fifty years ago, specifying both the year and the journal of publication!

Now, at nearly 83 years of age, Eli still works full time, he is still active and finds his work in the department to be extremely satisfying. One source of satisfaction is his interaction with his younger colleagues, who he finds to be very talented and dedicated and who are doing meaningful research. Eli feels that it is very important to have flexibility in his own work, and he is even now expanding his research in a variety of new areas. Recently he has acquired interest in areas related to proteins and the thermodynamics of complex systems. Even though he has made his mark with more than 1000 publications (!), he has no intention in slowing down.

Looking back at his long career and at his long life, he is grateful for the opportunities as well as for the hardships which he encountered; and he considers himself a very lucky man. As he comes into his office every morning, he is still excited by the challenge of a new problem to address, by a new theory to explore and by the anticipation of the joy of quest.
Welcome New Faculty — Continued

Esther S. Takeuchi joined the University at Buffalo in September 2007 as a Professor in the Departments of Chemical and Biological Engineering and Electrical Engineering and Director of the Advanced Power Sources Laboratory after a 22 year career in industry.

Previously she was employed at Greatbatch, Inc. in a variety of roles including Chief Scientist and Executive Director of Battery Research and Development and Centers of Excellence at Greatbatch, Inc. While at Greatbatch, Dr. Takeuchi was active in lithium battery research, particularly on cells for implantable applications. A main focus was the development of power sources for implantable cardiac defibrillators. Greater than 90% of ICDs implanted today use the lithium/silver vanadium oxide technology developed at Greatbatch, Inc.

Esther’s work has been honored by numerous organizations. These include the Jacob F. Schoellkopf Award given by the WNY American Chemical Society for creative research in batteries for medical applications, the Electrochemical Society Technology Award for development of lithium/silver vanadium oxide batteries and the Community Advisory Council of the State University of New York at Buffalo for outstanding achievement in science. Dr. Takeuchi was inducted into the WNY Women’s Hall of Fame and is an inventor on over 135 patents. USA Today has credited her with having more patents than any other living woman.

In 2002, Dr. Takeuchi was elected to the Board of Directors of Biomec, Inc., a medical technology incubation firm located in Cleveland, OH. In 2004, Dr. Takeuchi was elected a member of the National Academy of Engineering for successfully developing silver vanadium oxide batteries for implantable cardiac defibrillators and lithium/carbon monofluoride cells to power implantable pacemakers. Most recently she was the inaugural recipient of a Life Time Achievement Award presented by The Technical Societies Council of the Niagara Frontier and The Niagara Frontier Intellectual Property Law Association and she was selected for the inaugural Astellas Foundation Award by the American Chemical Society for scientific work impacting public health.

Dr. Takeuchi received a Bachelor’s degree from the University of Pennsylvania with a double major in chemistry and history and completed a PhD in chemistry at the Ohio State University. She also completed Post-Doctoral work at the University of North Carolina and the State University of New York at Buffalo.

Her research interests include novel power sources, development of power systems and investigation of medical device concepts. She is investigating novel electroactive materials to improve stability of batteries, and nano-structured electrodes to increase power density.*

Novel materials, nano-structures and electrochemical measurements.

For more information on all CBE Faculty, please visit our website at www.cbe.buffalo.edu
Engineering Microorganisms into Tiny Factories

Microorganisms may soon be efficiently and inexpensively producing novel pharmaceutical compounds, such as flavonoids, that fight aging, cancer or obesity, as well as high-value chemicals, as the result of research being conducted by Dr. Mattheos A.G. Koffas’ research group.

In work that could transform radically the ways in which many of these compounds are produced commercially, the UB researchers are genetically engineering microorganisms, such as E. coli, into tiny, cellular factories.

“We have done this by increasing the amount of precursor available and re-engineering the native microbial metabolism,” he explained, adding that they have taken different approaches to identifying the pathways that lead to the biosynthesis of precursors for desired compounds.

“Further improvement of production yields are possible and various approaches are being pursued by our team at this time,” he said.

Another major challenge for microbial biosynthesis is that the enzymes required for certain chemical steps have special requirements that the host cell cannot meet efficiently, Koffas said. In some cases, the enzyme needs to be re-engineered, while in others the host cell needs modification.

Koffas’ lab recently achieved the functional expression in E. coli of P450 monooxygenases, enzymes that are used widely in nature, but are not readily expressed in most industrially important microorganisms.

“P450 is very important in the synthesis of natural products,” said Koffas. “For example, both Taxol, the breast cancer drug that is currently produced from plant cultures, and artemisinin, the anti-malaria drug, have P450 enzymes in their biosynthetic pathways.”

The Koffas lab has introduced ways to modify both the P450 monooxygenase enzymes and the host cell, thereby improving their yield of flavonoids.

Koffas’ goal is to employ these microbial synthesis methods for a wide variety of applications.

Flavonoids, which are of interest to pharmaceutical companies because of their antioxidant and anti-carcinogenic properties, are difficult to produce using currently available methods.

Microbial synthesis strategies also are being adapted by the US researchers for the biosynthesis of other commercially significant classes of compounds, including vitamins, anti-cancer drugs, anti-parasitic drugs, dyes and food supplements.

The UB group is working on boosting yields further and hopes to achieve pilot scale production of flavonoids by the end of this year.

Thank you to the UB news service for contributions to this edition.
CBE Faculty Awards

David A. Kofke, UB Distinguished Professor and Chair of the Chemical and Biological Engineering Department, has received the 2007 Jacob F. Schoellkopf Award.

The award, which honors an individual in the Niagara Frontier for outstanding work and service in the fields of chemistry or chemical engineering, is given each year by the Western New York section of the American Chemical Society. The society has been presenting the medal annually since 1931, making it the oldest of its kind nationally.

In selecting Kofke, the jury cited his significant and lasting contributions to the field of applied thermodynamics. He was cited for his creative insight and advancement of applied thermodynamic theory through the development and application of molecular simulation methods that yield both qualitative and quantitative understanding of complex behaviors.

Kofke’s innovative and important pedagogical contributions to the undergraduate chemical engineering curriculum, especially in the field of thermodynamics, also were recognized, as were his accomplishments as an outstanding teacher and mentor to undergraduate and graduate students alike.

Kofke conducts research in which he uses molecular simulation to evaluate the physical behaviors exhibited by model materials. One of his goals is to develop knowledge and methods that enable others to conduct thermodynamic free-energy calculations efficiently and reliably, which is critical to the rational design of better, more sophisticated materials and processes, as well as to improving our understanding of the basic mechanisms of nature, life and disease.

Kofke also coordinates a multi-institution software engineering project aimed at developing a cyberinfrastructure that can synthesize the efforts of a broad range of molecular simulation developers.

Esther S. Takeuchi, newly arrived Professor of Chemical and Biological Engineering, and Electrical Engineering, has been named the Greatbatch Professor of Advanced Power Sources. Before joining UB, Takeuchi had worked at Greatbatch, Inc. for 22 years in a variety of positions in the area of research and development. Her most recent position was as chief scientist for the company. She is often cited as the woman awarded the most U.S. patents — 134, and is one of just 100 women elected to the National Academy of Engineering. The Greatbatch gift of $500,000 will support her and her work in the areas of power and biomedical research.

Takeuchi is renowned for her work in developing tiny batteries that have helped make implantable cardiac pacemakers, defibrillators and other medical devices a life-saving reality for millions of patients.

Takeuchi said, “I am honored to be chosen as the Greatbatch Professor. I am eager to expand my research with other scientists at UB into areas including batteries for other medical devices, understanding the physiological benefits of electrical stimulation and some homeland-security applications, which require ever-smaller power sources.”

Greatbatch, Inc. is a leading developer and manufacturer of critical components used in medical devices for the cardiac rhythm management, neurostimulation and interventional radiology markets. Additionally, Greatbatch supplies commercial power sources for other technically demanding applications. Greatbatch, Inc. is committed to investing in technology both through the company’s direct research and development efforts, as well as through partnering with leading educational institutions such as UB. Additional information about Greatbatch, Inc. is available at www.greatbatch.com.

Esther S. Takeuchi has been selected as one of the inaugural winners of the 2008 Astellas USA Foundation Award, administered by the American Chemical Society. This award recognizes those having “significantly contributed to scientific research that improved public health through their contributions in the chemical and related sciences.” Takeuchi is being recognized for her development of silver vanadium oxide (SVO) battery technology which enabled the development of lifesaving implantable cardiac defibrillators (ICDs). The award will be presented to Takeuchi at the 2008 ACS National Meeting to be held in Philadelphia this August.

(CBE Faculty Awards continued on page 8.)
CBE Faculty Awards — Continued

Mark T. Swihart, Associate Professor in Chemical and Biological Engineering, received the Kenneth T. Whitby Award from the American Association for Aerosol Research. This award, given to a single individual annually, recognizes outstanding technical contributions to aerosol science and technology by a young scientist. The award was presented at a plenary session of the AAAR annual meeting.

As reasons for his selection, the awards committee cited Swihart’s contributions in the incorporation of detailed chemical kinetics into aerosol dynamics models and his experimental advances in the aerosol synthesis of nanomaterials. AAAR is a nonprofit professional organization for scientists and engineers who wish to promote and communicate technical advances in the field of aerosol research. AAAR’s vision as a premier scientific association is to provide scientific forums and publications in all aspects of aerosol research, to encompass the diverse technical disciplines utilizing aerosol technology, and to engender aerosol research and innovation of the highest quality. AAAR has more than 4,000 members worldwide, and the annual meeting has more than 1000 attendees.

This award memorializes Kenneth T. Whitby, known for his contributions to aerosol measurements, the study of aerosol properties and behavior, and the nature of atmospheric aerosols. Whitby established the University of Minnesota’s Particle Technology Laboratory in the Department of Mechanical Engineering.

In August 2007, Prof. Mark T. Swihart accepted the position of Director of the UB2020 Strategic Initiative in Integrated Nanosstructured Systems (INS). INS is one of eight strategic research strengths identified by the University for growth and investment.

As Director, Swihart chairs the Faculty Advisory Committee that coordinates activities of the strength, including strategic hiring, mentoring of new faculty, improvement of research infrastructure, and support of multidisciplinary, collaborative research proposals and activities. He also has responsibility for the INS Instrumentation Facility which provides shared research instruments including Transmission Electron Microscopy, Electron Beam Lithography, cryogenics and cleanroom facilities, and surface and thin-film characterization. From 2005 to the present, more than fifteen new faculty have been hired within the INS Strategic Strength, and further hiring will continue over the next two years. Further details of INS activities are available at http://www.ins.buffalo.edu.

CBE Adjunct Professor Michael Lockett has been elected to the National Academy of Engineering. He is cited for “contributions to the theory and practice of distillation.” Mike is very highly regarded for his expertise in separations, and this is a well deserved recognition of his accomplishments.

Lockett joined us as an Adjunct Professor last March. He is recently retired after 25 years at Praxair where he held the position of Corporate Fellow. Before coming to Praxair, he was a Lecturer in Chemical Engineering at the University of Manchester Institute of Science and Technology. Mike has helped us with teaching in separations and design.

Faculty Promotions

CBE had four faculty promotions approved which will take effect this coming Fall. Dr. Mattheos Koffas has been promoted to the rank of Associate Professor with Tenure. Dr. Stelios Andreadis, Dr. Sriram Neelamegham and Dr. Mark Swihart have all been promoted to the rank of Full Professor. Congratulations to all!

Obituaries

Steven R. Hylkema (BS, 1981) was struck and fatally injured on March 5, 2008 while walking across the road in Myrtle Beach, SC. Hylkema was visiting the area to bring his parents back to NY state after a winter stay in South Carolina. He was working as a chemical engineer at Praxair, Inc. in Tonawanda, NY, and was formerly a 20 year employee of Occidental Chemical. Steven loved his garden, the outdoors, the Bills and lending a hand to anyone in need. He is survived by his wife, Judy.
Student Awards

The following student awards were presented for the 2007-2008 academic year. Please join the CBE Department in congratulating these hard-working and dedicated students on a job well-done!

Ivie Aifuwa, SEAS Dean’s Scholar Award.

Carlos Buitrago, a Chemical & Biological Engineering Academic Excellence Award.

Ellen Cardone, Outstanding Senior Award, sponsored by the WNY Local Section of the American Institute of Chemical Engineers, and a Senior Scholar Award.

Joseph Chemler, James W. & Nancy A. McLernon Engineering Scholarship.

David Galuski, SEAS Dean’s Scholar Award.

Carlos Gonzalez, a Xerox/SHPE Scholarship Award.

Kristina Kolp, a Felix Smist Scholarship.

Chi Lo, SEAS Dean’s Fellow Award.

Andrea Morrill, The David M. Benenson Memorial Scholarship, and a Chemical & Biological Engineering Academic Excellence Award.

Andrew Paluch, James W. & Nancy A. McLernon Engineering Scholarship, and an SEAS Senior Scholar Award.

Shilpa Patil, UB Engineering Graduate School Ambassador Award.

Eric Hao Fan Peng, UB Engineering Graduate School Ambassador Award.

Kevin Pustulka, Outstanding Junior Award, sponsored by the WNY Local Section of the American Institute of Chemical Engineers, and The Michael Bauda Memorial Scholarship.

Thomas Rosch, UB Engineering Graduate School Ambassador Award.

Tai Boon Tan, The Joseph & Adele Augustyn Memorial Book Award.

Kevin Tanzil, Robert H. & Catherine H. Goldsmith Fellowship.

Jacob Weiner, a Chemical & Biological Engineering Academic Excellence Award.

Christina Yacoob, The Michael Bauda Memorial Scholarship, and an Engineering Alumni Association Scholarship.

Bravo!

Notes From The Water Cooler

The Andreadis Family welcomed a new son to their family. Theoharis (Harris) was born at 1:35 am on Sunday, January 20, 2008. Stelios and Rea also have a daughter, Sophia.

Manolis and Persefoni Tzanakakis became first-time parents with the arrival of Stylianos Arion on January 31, 2008.

The department welcomes Patricia Engel who interrupts her recent retirement from UB to join us as a part-time, temporary member of our clerical staff.

Pat’s previous service at UB has been in the Department of Surgery and in Geography.

Many thanks to the CBE graduate students, faculty and staff for their donations to the Toys for Tots campaign this past Christmas. Their generosity made for a very special holiday for lots of needy area boys and girls.
We would like to hear from you to know what you’ve been up to since graduation! Please take a few minutes to fill out the form below and mail it to us, or reply via the web at: www.che.buffalo.edu/alumni. We’ll put your news in future issues of our newsletter, unless you indicate otherwise. (Please check one of the boxes below to indicate your preference).

Name: __

Address: ___

UB CE degree(s) and years: __

Spouse’s Name and Children: __

News/Comments: __

Please return to: The Catalyst
Department of Chemical & Biological Engineering
University at Buffalo
307 Furnas Hall
Buffalo, NY 14260-4200

□ Yes, you may print my news in a future issue.
□ No, I prefer you don’t print any information about me in future issues.
□ New address.