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Exact solution for the singlet density distributions and second-order
correlations of normal-mode coordinates for hard rods in one dimension

C. Daniel Barnes and David A. Kofke
Department of Chemical Engineering, State University of New York at Buffalo,
Buffalo, New York 14260-4200

~Received 8 December 1998; accepted 25 March 1999!

We examine the distribution of normal-mode coordinates~defined via the eigenvectors of a chain of
harmonic oscillators! for a system of purely repulsive hard rods in one dimension. We obtain an
exact solution for the singlet density distribution, and separately for the covariances of the
normal-mode coordinates. The hard-rod behavior is examined in terms of its deviation from the
corresponding distributions for the system of harmonic oscillators. All off-diagonal covariances are
zero in the hard-rod system, and the~on-diagonal! variances vary with the normal-mode wave
number exactly as in the harmonic system. The detailed singlet normal-mode density distributions
are very smooth but nonanalytic, and they differ from the~Gaussian! distributions of the
corresponding harmonic system. However, all of the normal-mode coordinate distributions differ in
roughly the same way when properly scaled by the distribution variance, and the differences vanish
as 1/N in the thermodynamic limit of an infinite number of particlesN. © 1999 American Institute
of Physics.@S0021-9606~99!51523-7#
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I. INTRODUCTION

The system of hard rods in one dimension, also kno
as the Tonks gas,1 is of interest as a prototype for studyin
the effect of steric exclusion on the behavior of fluids. T
model exhibits no nontrivial behaviors—like all systems
one dimension, it does not undergo any phase transition—
many aspects of its behavior can be solved in closed fo
and these solutions have provided some insight on the
havior of its higher-dimensional counterparts.2 Usually the
solutions do not invoke the thermodynamic limit to yield
result, so it is possible to examine the hard-rod model to g
some understanding of finite-size effects. Tonks was am
the earliest to present formulas for the basic properties s
as the equation of state1 but, as pointed out by Robledo an
Rowlinson,3 the earliest solution was presented
Rayleigh.4 It is now widely known that the van der Waa
equation of state is exact in one dimension, in the sense
the van der Waals contribution to the pressure due to re
sion is exactly that of the hard-rod system.1,5 Other proper-
ties known analytically for the hard-rod model include t
pair and higher-order correlation functions for the pu
system,6 and mixtures,7,8,17 the behavior in confined
spaces,3,9–11 and in the presence of other external fields12

and various dynamical properties.13 Most recently, Corti and
Debenedetti14 as part of their studies of thermodynam
metastability turned to the hard-rod model for insight on
nature of voids~regions of space with no particles prese!
that arise as part of the natural fluctuations in fluid syste

One of our research interests lies in the developmen
methods for computing free energies of solids by molecu
simulation. One of the avenues that we have explored
volves the use of a harmonic reference system, in which
interactions between the particles in the system take the f
of simple harmonic springs. As is well known, the propert
11390021-9606/99/110(23)/11390/9/$15.00
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of this system can be solved analytically by diagonalizing
quadratic form of the internal energy, which effectively co
verts the system into a collection of independent harmo
oscillators. This is the basis of lattice dynamics.15 Knowl-
edge of the distribution of lattice vibration frequencies for
harmonic system is sufficient to determine the free ene
and thus most other thermodynamic properties of interest
the focus of study in lattice dynamics calculations and m
surements is this quantity.

The usual approach taken in applying lattice dynam
calculations to estimate the properties of realistic syste
involves an expansion of the intermolecular potential
powers of the molecular separations. Crystal symme
causes the first-order terms to vanish, leaving the harmo
system as a natural reference. Corrections are then applie
considering higher-order terms in the expansion. This is
a viable route to the study of hard potentials~such as hard
rods!, because these potentials are not analytic. We dea
stead with an approach that is couched more in the langu
of fluid-state theory. We are concerned with the singlet, p
and higher-order correlations of the ‘‘normal-mode coor
nates’’ occupied by the phonons. For the harmonic syst
the singlet distribution is simply a Gaussian, and there are
higher-order correlations between the other modes. To
extent that these distributions are similar in a harmonic s
tem and a system of interest, we have a viable means
estimating the target system’s properties via molecular sim
lation. We reserve the details of this method for a sepa
publication. Instead we present here our exact solution
the singlet normal-mode coordinate distribution for the ha
rod model system.

The harmonic and hard-rod systems are very much
like one another, and in fact they lie at the extreme limits
the Toda lattice,1 which is an integrable one-dimension
0 © 1999 American Institute of Physics
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model that has been very helpful in understanding nonlin
lattice dynamics. We do not pursue the more general T
lattice in our work because our ultimate aim is to apply t
insights from the present study to develop molecular simu
tion methods for three-dimensional systems. The harmo
system retains its simplicity when extended this way, but
Toda lattice does not.

We begin in Sec. II by reviewing the treatment of ha
monic systems, doing this mainly to establish the notat
we use in subsequent sections. Then in Sec. III we review
hard-rod model and the solution for its partition functio
and we consider a way to obtain simple statistical meas
of the normal-mode correlations in the hard-rod syste
Then in Sec. IV we present the analytic solution for t
normal-mode singlet distribution, discuss the results in S
V, and provide concluding remarks in Sec. VI.

II. DESCRIPTION OF A SYSTEM OF HARMONIC
OSCILLATORS

We consider a system ofN harmonic oscillators in one
dimension with only nearest-neighbor interactions. A co
figuration is described by the vector of coordinatesxT

5$x1 ,x2 ,...,xN%, wherexk is the coordinate of thekth os-
cillator (xT is the transpose of vectorx!. The energy for a
given configuration is

U5U01W(
k51

N11

~xk2xk21!2. ~1!

Here we identifyW as the strength of the harmonic in
teraction, which is the same for all pairs. Also, we bound
system by fixed walls, which for notational simplicity w
assign coordinatesx050 andxN115L. It is much more con-
venient to work with the coordinates that describe the de
tion of each oscillator from its mean~or minimum-energy!
position xk

05kL/(N11): gk5xk2xk
0. This step introduces

new constant terms that can be lumped withU0 , but since all
these contributions are not important to the present deve
ment we will drop them entirely. Then the energy may
written

U5gTHg, ~2!

whereg is the vector of deviation coordinates andH is an
N3N tridiagonal matrix with diagonal elements equal
12W and secondary diagonal elements equal to2W.

Diagonalization of the above quadratic form results in
expression for the energy in terms of theN ‘‘normal-mode’’
coordinates that we designatehT5$h1 ,h2 ,...,hN%, thus

U5hTLh, ~3!

whereL is a diagonal matrix of eigenvalues ofH, and the
simplicity of the original quadratic form permits their dire
determination,

lm52WS 12cos
mp

N11D , ~4!
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where lm is the mth diagonal element ofL. The normal-
mode coordinatesh are simple linear transformations from
the real-space deviationsg and are obtained from the eigen
vectors ofH,

h5F21g, ~5!

whereF is the matrix with columns given by the eigenve
tors of H and, becauseH is symmetricF215FT; alsoF is
symmetric with elements

fmk5S 2

N11D 1/2

sinS kmp

N11D , ~6!

so F215F.
The normal-mode singlet density distributionpm(hm)

describes the distribution of values adopted by the norm
mode coordinatehm . Formally it may be expressed as a
ensemble average

pm~h!5^d~hm2h!&, ~7!

whered is the Dirac delta function. For the simple system
harmonic oscillators, this distribution function is a Gauss
with zero mean

pm
harm~h!5~p/lm!21/2exp~2lmh2!, ~8!

so the variance in the distribution of the coordinatehm is
given directly by its eigenvaluê hm

2 &5(2lm)21; the
normal-mode coordinates for the harmonic system are un
related, i.e.,̂ hmh l&50, mÞ l, which is why they are desig
nated ‘‘normal modes.’’

III. HARD-ROD MODEL AND SECOND-ORDER
CORRELATIONS

We consider a system ofN hard rods of equal lengths,
bounded by hard walls~of infinite potential! separated by a
distanceL as pictured Fig. 1.

We could just as easily have worked within period
boundaries. Note that the coordinatexk specifies the position
of the right-hand side of the rod. The configuration integ
for the hard-rod system is given by

QHR5
1

N! E0

L

dxNE
0

L

dxN21¯E
0

L

dx2E
0

L

dx1exp~2bUHR!,

~9!

whereUHR is the energy of the system, which is infinite
there is any overlap~including overlaps with the walls! and
zero otherwise.

FIG. 1. System ofN hard rods of equal lengthd and total system lengthL.
The system is bounded by walls of infinite potential at 0 andL.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The usual route to solving the partition function involv
ordering the rods as suggested by Fig. 1, so thatxk.xj for
k. j . This eliminates the degeneracy factorN! and changes
the limits of integration for each rod,

QHR5E
Ns

L

dxNE
~N21!s

xN2s

dxN21¯E
2s

x32s

dx2E
s

x22s

dx1 .

~10!

The Boltzmann weighting can be removed because
limits of integration preclude any overlap. A change of c
ordinates is now applied

yk5xk2ks, ~11!

so the partition function becomes

QHR5E
0

L2sN

dyNE
0

yN
dyN21¯E

0

y3
dy2E

0

y2
dy1 . ~12!

The nested integrals are now easily evaluated, yielding

QHR5
~L2sN!N

N!
. ~13!

Various statistics about the hard-rod positions and corr
tions are of interest. It is easier to derive them in terms of
convenience coordinatesy defined in Eq.~11! and then trans-
form the averages to the real coordinatesx. The averagey
value adopted by thekth rod is

^yk&5
1

QHR
E

0

L2sN

dyNE
0

yN
dyN21¯

3E
0

yk11
dyk yk¯E

0

y3
dy2E

0

y2
dy1

5
k

N11
~L2sN!, ~14!

so the averagex coordinate is

^xk&5^yk&1ks

5
k

N11
~L1s!. ~15!

which, as one might expect, is roughly the correspond
fractional distance to the end of the system’s length.

Again it is convenient to assign each rod a ‘‘lattice-site
coordinate and focus on the statistics associated with de
tions from this position. We do this even though the hard-
system does not form a true crystalline phase. As with
harmonic system above, we define the lattice site for rodk as
its average position, and introduce the deviation coordina
gk[xk2^xk&; obviously ^gk&50.

Likewise, the average pair correlate is given from t
two-body average
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^yjyk&5
1

QHR
E

0

L2sN

dyNE
0

yN
dyN21¯

3E
0

yk11
dykyk¯E

0

yj 11
dyjyj¯E

0

y3
dy2E

0

y2
dy1

5
j ~k11!

~N11!~N12!
~L2sN!2, k> j . ~16!

Then

^g jgk&5^xjxk&2^xj&^xk&

5^yjyk&2^yj&^yk&

5S L2sN

N11 D 2 j ~N112k!

N12
, k> j . ~17!

We now make our first connection between the hard-
model and the harmonic system reviewed in Sec. II. W
consider the normal-mode coordinates introduced in Sec
but we examine statistics for them when ensemble avera
over the hard-rod configurations. The normal-mode deviat
coordinates are still defined in terms of the real-space de
tion coordinates as in Eq.~5!, and it is clear that the mea
value of the normal-mode coordinate^hm& is still zero for all
m. We turn then directly to second-moment averages of th
coordinates. These may be obtained from the results just
sented for̂ g jgk& via the transformation

^hhT&5F^ggT&F ~18!

~in writing the result this way we have applied some of t
simplifying features ofF!. Inserting the result for̂ g jgk&
and Eq.~6! for F, after some manipulation the~co!variance
of the normal-mode deviations is given by

^hmhn&5
1

~N12!S 12cos
mp

N11D FL2sN

N11 G2

3(
j 51

N

sin
jmp

N11
sin

jnp

N11
. ~19!

The very surprising result of this analysis is that all t
second-order statistics for the distributions of the norm
mode coordinates are the same in the hard-rod system
the harmonic oscillators for which the coordinates are
rived. FormÞn in Eq. ~19!, the sine functions are orthogo
nal so the summation is zero, and therefore the covarianc
zero. Form5n, the sine functions are of course equivale
and the variance is given by

^hm
2 &5

~N11!

2~N12!S 12cos
mp

N11D FL2sN

N11 G2

. ~20!

Interestingly, these statistics and those from the harmo
system differ by the same multiplicative constantL
2sN)2/(N12)(N11) for all m, which means the hard-rod
averages could all be made equal to their harmonic coun
parts by appropriate selection of the harmonic spring c
stantW.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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IV. NORMAL-MODE SINGLET DISTRIBUTIONS

We now turn to an analysis of the detailed distributio
of the normal-mode coordinates averaged over config
tions of the hard-rod system. Here differences between
hard-rod and harmonic systems begin to emerge.

We start with the description ofpm(h) as the ensemble
averaged delta function given by

pm~h!5
1

QHR
E

0

L2sN

dyNE
0

yN
dyN21¯

3E
0

y3
dy2E

0

y2
dy1 d~h2hm~y!!. ~21!

We will introduce the linear transformation that gives t
normal-mode coordinate in terms of the hard-rod con
nience coordinatesy,

hm~y!5 (
k51

N

fmkgk~yk!

5 (
k51

N

fmkS yk2
k

N11
YD , ~22!

where we have defined

Y5L2sN. ~23!

A key step in the development is writing the delta fun
tion in its Fourier transform representation

d~x!5E
2`

`

eitx dt,

where i 5A21. With these transformations the singl
normal-mode density distribution can be expressed

pm~h!5
1

2pQHR
E

2`

`

dt exp@ i t ~h1hm
0 !#E

0

Y

dyN

3exp@2 i tfmNyN#¯E
0

y2
dy1 exp@2 i tfm1y1#,

~24!

where

hm
0 [

Y

N11 (
k51

N

fmkk. ~25!

The task now is to develop a means to perform
nested integrals over they coordinates. This can be accom
plished by casting them in terms of a recursion relation:

Qk
~m!~ t,y!5E

0

y

dyk exp@2 i tfmkyk#¯E
0

y2
dy1

3exp@2 i tfm1y1#

5E
0

y

dyk exp@2 i tfmkyk#Qk21
~m! ~ t,yk!, ~26!

so
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pm~h!5
1

2p

1

QHR
E

2`

`

dt exp@ i t ~h1hm
0 !#QN

~m!~ t,Y!

5
1

QHR
Q̂N

~m!~h1hm
0 ,Y!, ~27!

where the caret indicates a Fourier transform of the first
gument ofQN

(m) . The recursion relation forms a convolutio
that yields to application of the Laplace transform~of the
second argument ofQN

(m) ; the Laplace transform is indicate
by a tilde!:

L@Qk
~m!~ t,y!#[Q̃k

~m!~ t,s!

5
1

s
Q̃k21

~m! ~ t,s1 i tfmk!. ~28!

Repeated application of this formula with an obvio
termination condition atk51 produces

Q̃N
~m!~ t,s!5 )

k51

N11

~s1 i tAk
~m!!21, ~29!

where

Ak
~m![(

j 5k

N

fm j

5S 2

N11D 1/2

3

sinFmp~k1N!

2~N11! GsinFmp~N112k!

2~N11! G
sinF mp

2~N11!G
, ~30!

where the latter equality is obtained as a trigonometric id
tity.

Before performing the inverse transform it is importa
to note that terms inside the product may be degenerate.
let Āk

(m) , k51¯N̄<N11 be the unique values ofA(m) and
we indicate their degeneracy inA(m) by vk ; Eq. ~29! can be
rewritten as:

Q̃N
~m!~ t,s!5)

k51

N̄

~s1 i tĀk
~m!!2vk. ~31!

The general solution for the inverse Laplace transform
Eq. ~31! is16

QN
~m!~ t,Y!5L21@Q̃N

~m!~ t,s!#

5 (
k51

N̄

(
j 51

vk Ck, j
~m!Y~vk2 j !

~vk2 j !! ~ j 21!!

e2 i tY Āk
~m!

~ i t !N1 j 2vk
, ~32!

where

Ck, j
~m!5 lim

s→2Ak
~m!

S d~ j 21!

ds~ j 21! )
lÞk

N̄

~s1Āl
~m!!2v l D . ~33!

These coefficients forj 51 are not particularly difficult,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Ck,l
~m!5)

l 51
lÞk

N̄

~Āl
~m!2Āk

~m!!2v l. ~34!

Otherwise theCk, j
(m) coefficients can be treated via a recursi

relation, but the computer code that results is not very e
cient. In general, great variation in the degeneracy may
observed from one term to the next and it is difficult
identify a pattern in this behavior that might be used to sp
up the calculation. However, the form of the degeneracy
particularly simple if we restrictN such thatN11 is prime.
We demonstrate in the Appendix that in this situation all
the elements ofA(m) are nondegenerate whenm is odd, and
all elements but one are doubly degenerate whenm is even.
In particular,

Āk
~m!5Ak

~m! , k51¯N̄5~N11! ~m odd!,

and

Āk
~m!5Ak

~m!5AN122k
~m! ,

k51¯~N̄21!5~N/2! ~m even!,

Āk
~m!5Ak

~m! , k5N̄5~N/2!11.

In practice restrictingN this way barely reduces the genera
ity of the development, so we proceed from here using
simplification.

Then for m even the j 52 coefficients are needed i
addition to those forj 51, and Eq.~34! becomes

Ck,2
~m!52Ck,1

~m!F ~AN
~m!2Ak

~m!!21

12 (
l 51,
lÞk

N/211

~Al
~m!2Ak

~m!!21G ~m even!, ~35!
fo

t
qu
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while for m odd, only j 51 is needed, and the inverse tran
form may be written directly

QN
~m!~ t,Y!5~ i t !2N(

k51

N

Ck,1
~m!e2 i tYAk

~m!
~m odd!. ~36!

The singlet density distribution is finally recovered b
performing the Fourier integration with respect tot as indi-
cated in Eq.~27!. The terms inQN

(m)(t,Y) are of the form
t2m exp(ibt), for which the Fourier transform fromt to h is

~h1b!n21

~n21! S 2
1

2
1Q~h1b! D , ~37!

whereQ is the Heaviside function.
Thus the singlet distribution is a sum of polynomials

h, each with its own Heaviside function that ‘‘switches on
at a particularh52b, whereb is in general different for
each term of the sum. The net effect of the Heaviside fu
tion ~when added to21/2! is to change the sign of the coe
ficient of the corresponding term in the sum. Forh large and
negative, all Heaviside functions are ‘‘off,’’ and we have
simple sum of polynomials; forh large and positive we have
the same polynomial sum but with the opposite sign. Clea
the probability density must be zero for sufficiently larg
positive or large negative values ofh, so we must conclude
that this polynomial sum is identically zero. We have n
attempted to otherwise demonstrate this result analytica
but we do find it to be true empirically. A consequence
that we may drop the21/2 from Eq.~37!. Upon taking this
step we put together all the foregoing developments to ar
at our final working expression forpm(h),

pm~h!5
1

QHR

1

~N21! (
k51

N11

Ck,1
~m!~h1hm

0 2YAk
~m!!N21

3Q~h1hm
0 2YAk

~m!! ~m odd!, ~38!
pm~h!5
1

QHR

3S (
k51

N/2 S S Ck,1
~m!

~N22!!
1

Ck,2
~m!

~N21!!
~h1hm

0 2YAk
~m!! D ~h1hm

0 2YAk
~m!!N22Q~h1hm

0 2YAk
~m!! D

2
~h1hm

0 2YAN/211
~m! !N21

~N21!!
CN/211,1

~m! Q~h1hm
0 2YAN/211

~m! !
D ~m even!.

~39!
he

ri-
in
Again, this result applies forN11 a prime number. In
summary, the terms appearing in this equation are as
lows: QHR is the hard-rod partition function given by Eq.~9!;
Ck,1

(m) andCk,2
(m) are given by Eqs.~34! and~35!, respectively,

and are functions of the modem and indexk; hm
0 is given by

Eq. ~25!, Y is given by Eq.~23!; Ak
(m) is given by Eq.~30!; Q

is the Heaviside function and is zero when its argumen
less than zero and unity when its argument is greater or e
l-

is
al

to zero; N is the number of hard rods, and so is also t
number of modes.

V. DISCUSSION

Plots of the exact solution for the singlet density dist
bution for systems ofN54, 10, and 22 rods are presented
Figs. 2–4, respectively. Plots for larger values ofN become
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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increasingly difficult to construct. The distribution functio
is given by a sum ofNth order polynomials, which tend to
offset each other ash increases, eventually canceling exac
for h beyond its maximum value. Ash approaches its maxi
mum, roundoff errors in summing the polynomials cause d
ficulties in computing the density distribution. However,
discussed below, results up toN522 are sufficient to un-
cover the trends in the behavior of the distribution functio
In each plot curves are shown for several values of the m
numberm; for N54 the corresponding~Gaussian! distribu-
tions for a pure harmonic oscillator~with spring constant
selected to result in the same variance! are presented in Figs
2–4. The hard-rod distributions appear to be very smo
even though at many points they are nonanalytic. T
nonanalyticities come from terms of the form (h
2b0)N21Q(h2b0), so the distribution is nonanalytic a

FIG. 2. Singlet normal-mode density distribution for a system of four h
rods of widthd51 at a densityNd/L of 0.95 shown with the correspondin
harmonic distribution of the same variance. The four sets of curves co
spond to each of the four normal modes, wherem51 is the lowest fre-
quency mode~longest wavelength! and m54 is the highest frequency
mode.

FIG. 3. Singlet normal-mode density, as presented in Fig. 2, but foN
510 particles.
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each pointh5b0 where a Heaviside function is turned o
but the discontinuity appears only in theN21 derivative.

A careful look at the distributions forN54 shows that
the curves form odd appear to be symmetric, while those f
m even exhibit asymmetry. For largerN the asymmetries
appear to be attenuated, and it becomes increasingly diffi
to distinguish the hard-rod distributions from Gaussi
forms. More about the symmetry of the distributions can
uncovered by examining their behavior at the two tails, j
before they become zero asuhu increases. On the left-han
side, p(h) is given by the polynomial multiplying the firs
Heaviside function to be turned on, while on the right-ha
side the distribution is given by the negative of the polyn
mial multiplying the last Heaviside function to be turned o
~because turning this last term on exactly cancels the
before the distribution is zero!. For m odd, the distribution
just before it vanishes on the right-hand side is

pm~h!5
1

~N21!!QHR
Cmin,1~h1hm

0 2YAmin
~m!!~N21!,

~40!

while on the left-hand side

pm~h!5
1

~N21!!QHR
Cmax,1~h1hm

0 2YAmax
~m! !~N21!.

~41!

where ‘‘max’’ and ‘‘min,’’ respectively, refer to the value
for k for the largest and smallest values ofAk

(m) . We find
empirically Cmin,15Cmax,1 and (hm

0 2YAmin
(m) )52(hm

0

2YAmax
(m) ), indicating that them-odd distributions are symmet

ric in terms of their vanishing points and their behavior a
proaching these points. Form evenAk

(m) is the maximumA
for k5N/211 if m/2 is odd, while thisk gives the smallest
A if m/2 is even. In either case, the distribution at the oth
end vanishes according to

d

e-

FIG. 4. Singlet normal-mode density, as presented in Fig. 2, but foN
522 particles. At this scale the hard rod and harmonic curves are virtu
indistinguishable.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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pm~h!5
1

~N21!!QHR
@Ck,1~h1hm

0 2YAk
~m!!~N22!

1Ck,2~h1hm
0 2YAk

~m!!~N21!#. ~42!

The point is that the neither the vanishing point nor the fu
tional form near the vanishing point is symmetric in th
case. Based on this limited observation of the analytic fo
of the distributions, along with the observed shape of
complete distributions, we would judge the distributions
m odd to be completely symmetric about the origin, wh
those form even are not.

We can speculate on the origins of this symmetry beh
ior. We note that the normal modes corresponding tom odd
describe collective modes that are symmetric about the
ter of mass of the system, while the modes correspondin
m even describe motions that are antisymmetric about
point. Connected to this, and more important, is the num
of nodes associated with each collective motion. The no
are points where the deviation of the rods from their latt
sites changes sign. Thus each node represents a poi
which the rods locally are being compressed or expand
For m odd, the number of such nodes iseven, meaning the
number of compression points is the same regardless o
sign of h; for m even the number of nodes isodd, so the
number of compression points depends on the sign ofh. For
a harmonic system, compression and expansion of the
ticles is the same in terms of the energy cost, but for h
rods there is obviously a severe energy asymmetry betw
the two motions.

The analysis of Sec. III indicates that the hard-rod n
mal mode distributions have variances~and covariances!
identical to the harmonic system that defines the nor
mode coordinates. This result suggests that compariso
the behavior of various modes for a givenN can be facili-
tated by scaling all normal-mode coordinates by the co
sponding variance exhibited in the harmonic system. If
hard-rod normal-mode singlet distributions were identica
those for a harmonic system, then this transformation wo
cause all the distributions to collapse onto a single Gaus
curve of unit variance. To highlight the difference from ha
monic behavior, we examine in Figs. 5 and 6 the differen
in these scaled distributions from the unit-variance Gauss
for N54 and 10, respectively. For givenN, the scaled dis-
tributions form odd are mutually identical. Although forN
54 the scaled curves form even do not show a commo
behavior, asN grows these curves all approach the comm
distribution form odd. As shown in Fig. 6, forN as small as
10 all the scaled distributions are virtually indistinguishab
from one another.

Figures 5 and 6 also provide some indication of the s
dependence of the scaled distributions. The maximum de
tion is of the order of 0.6 forN54, while for N510 it has
diminished to about 0.2. This observation suggests a sim
N dependence of the scaled distribution. In Fig. 7
variance-scaled distributions are multiplied byN, and the
resulting curves are presented for several values ofN from
N54 to N522. There is a clear convergence to a univer
behavior which seems to be almost reached at the lar
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value ofN used to construct the plot. In the thermodynam
limit, all singlet normal-mode density distributions ado
Gaussian forms, with variances distributed exactly as in
harmonic system. Differences between the hard-rod confi
rations and those of the harmonic system must mani
themselves at the level of two-‘‘body’’ and higher correl
tions among the normal-mode coordinates. However, gi
that the normal-mode covariances are zero@Eq. ~19!#, coop-
erative behaviors at the pair level are not likely to sho
much, if any, deviation of the distributions from the ha
monic forms.

Finally we consider the effect of density on the resul
In Fig. 8 we present the limiting form of variance- an
particle-number-scaled singlet-density deviation, as a fu
tion of the system densityNs/L. We observe the sam
qualitative behavior over all densities. As the density is

FIG. 5. Difference between the hard rod and harmonic and singlet nor
mode density distributions for the system of four hard rods shown in Fig
The axes are scaled by the variance of each distribution. The curves fm
51 andm53 are indistinguishable.

FIG. 6. As in Fig. 5, but forN510. The differences between the odd an
even modes which are very apparent in Fig. 5~four hard rods! are now
essentially indistinguishable.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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creased, the scaled deviation increases in magnitude re
ing the increasing importance of the repulsive interactions
the hard-rod behavior.

VI. CONCLUDING REMARKS

The hard-rod model represents a highly anharmonic s
tem. The hard-rod potential cannot be expanded as a po
series in the pair separation as is usually done to connec
anharmonic system to a harmonic reference. Yet the mo
exhibits at a basic level, behavior that conforms complet
to that of a harmonic system: all of the singlet normal-mo
density distributions are exactly harmonic in the thermo
namic limit, and all the second-order correlations follow h
monic behavior as well. Repulsion is an important feature
real intermolecular potentials, and is usually the larg

FIG. 7. Scaled difference between the hard rod and harmonic sin
normal-mode density distributions various system sizes. Difference
scaled by particle number as indicated. The systems converge to a lim
curve with increasing system size.

FIG. 8. Scaled difference between the hard rod and harmonic sin
normal-mode density distributions forN522 at densities (Nd/L) of 0.95,
0.80, and 0.60. The curves are scaled bys(12Nd/L) as shown.
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source of anharmonicity. This work suggests that a via
route to modeling the behavior of real solids from a h
monic reference would consider perturbations in th
normal-mode density distributions rather than in the interm
lecular potential.

APPENDIX

Here we show that forN11 prime andm odd, the sum-
mationsAk

(m) of the eigenvector coefficientsf j
(m) for j 5k to

N11 are unique for allk'1<k<N11, while for m even,
the summations are doubly degenerate for the same rang
k except whenk5N/211, for which the summationAN/211

(m)

is unique.
Manipulations using trigonometric identities transfor

the expression forAk
(m) given in Eq.~30! into a form more

useful for this analysis; in the end we have

Ak
~m!5S 2

N11D 1/2cos@a#2cos@a~2~N2k11!11!#

2 sin@a#
,

~A1!

wherea5mp/2(N11). The onlyk-dependent term in this
expression is cos@a(2(N2k11)11)# so any uniqueness or de
generacy with respect tok derives from this term, and we
need consider only it in the subsequent analysis.

Whenever the cosine functions are equal for differe
values ofk, Aki

(m)5Akj

(m) , there is a degeneracy. There are tw

cases to check. First, if the arguments of the cosine differ
an integer multiple of 2p, their cosines will be equal. Sec
ond, cosine is a even function, so that cos@b#5cos@2b
12pq# for q any integer including zero, and degeneracy m
arise this way.

Consider the first case. There will be degeneracy for t
values ofk, kjÞki , if

a~2~N2ki11!11!2a~2~N2kj11!11!52pq,

q5...,22,21,1,2..., ~A2!

which simplifies to

kj2ki5~N11!
2q

m
.

The difference ink’s, kj2ki , must be an integer, so th
right-hand side must also be an integer if there exist t
values of k that satisfy this relation. If we chooseN11
prime, there is no rational number~less than unity! by which
it can be multiplied that would result in an integer, so t
quantity 2q/m must also be an integer. Since bothq andm
are integers, this requires thatq be an integer multiple ofm
for m odd, or an integer multiple ofm/2 for m even. In any
case the smallest possible value for the right-hand side iN
11, but at the same time the largest possible magnitude
the difference ink’s is N11215N. Obviously the differ-
ence ink’s cannot simultaneously be less than or equal toN
andgreater than or equal toN11, so we conclude that ther
exists no pair ofk values for which the respective argumen
to the cosine differ by a multiple of 2p ~for N11 prime!.

For the second case there will be degeneracy if
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2a~2~N2kj11!11!12pq5a~2~N2ki11!11!,

q5...,22,21,0,1,2,...,

~A3!

which simplifies to

kj1ki52
N11

m
~m2q!11. ~A4!

Sinceq can represent any integer, the term (m2q) can take
on any integral value, so we simply replace it byq, and the
equation becomes

kj1ki5~N11!
2q

m
11. ~A5!

Again, choosingN11 prime, and following the same
arguments for the first case,q must be integer multiples ofm
for m odd, and integer multiples ofm/2 for m even. Now we
have a sum of twok’s, the largest possible value beingN
111N52N11. For m odd the smallest possible value
the right-hand side occurs forq5m, which leaveskj1ki

52N13, which exceeds the bound for the sum. Thus no p
of k’s can lead to a degeneracy~m odd,N11 prime!. For m
even, the smallest value of the right-hand side occurs foq
5m/2. Thenkj1ki5N12, and we have an expression th
can be satisfied by some pairs ofk values; in particular these
pairs are

$~N11,1!,~N,2!,~N21,3!,...,~N/213,N/221!

3~N/212,N/2!%.
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Note that sinceN11 is prime,N is even, soN/2 is an inte-
ger. From this set it can be seen thatAN11

(m) 5A1
(m) , AN

(m)

5A2
(m) , etc. Form even, all the terms are doubly degenera

with the single exception of theN/211 term, which is
unique. There is no triple or higher degeneracy.

We have shown that by choosingN11 prime, the sum-
mations of the eigenvector coefficients are unique for ak
for m odd, and are doubly degenerate~symmetrically about
N/211) for m even for allk with the exception of theN/2
11 term, for which the sum is unique.
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