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We examine the distribution of normal-mode coordindtifined via the eigenvectors of a chain of
harmonic oscillatorsfor a system of purely repulsive hard rods in one dimension. We obtain an
exact solution for the singlet density distribution, and separately for the covariances of the
normal-mode coordinates. The hard-rod behavior is examined in terms of its deviation from the
corresponding distributions for the system of harmonic oscillators. All off-diagonal covariances are
zero in the hard-rod system, and tfen-diagongl variances vary with the normal-mode wave
number exactly as in the harmonic system. The detailed singlet normal-mode density distributions
are very smooth but nonanalytic, and they differ from tf@aussian distributions of the
corresponding harmonic system. However, all of the normal-mode coordinate distributions differ in
roughly the same way when properly scaled by the distribution variance, and the differences vanish
as 1N in the thermodynamic limit of an infinite number of particds © 1999 American Institute

of Physics[S0021-960809)51523-7

I. INTRODUCTION of this system can be solved analytically by diagonalizing the
quadratic form of the internal energy, which effectively con-
The system of hard rods in one dimension, also knownerts the system into a collection of independent harmonic
as the Tonks gasjs of interest as a prototype for studying oscillators. This is the basis of lattice dynamtesknowl-
the effect of steric exclusion on the behavior of fluids. Theedge of the distribution of lattice vibration frequencies for a
model exhibits no nontrivial behaviors—like all systems inpgrmonic system is sufficient to determine the free energy
one dimension, it does not undergo any phase transition—buf, thus most other thermodynamic properties of interest, so

many aspects of its behavior can be solved in closed formye focys of study in lattice dynamics calculations and mea-
and these solutions have provided some insight on the b%’urements is this quantity.

havior of its higher-dimensional counterpaftslsually the

luti d invoke the th d i limi ol The usual approach taken in applying lattice dynamics
solutions do not invoke the thermodynamic limit o yie 4 calculations to estimate the properties of realistic systems

result, so it is possible to examine the hard-rod model to gain Sives an expansion of the intermolecular potential in

some understanding of finite-size effects. Tonks was amon .
. . . owers of the molecular separations. Crystal symmetry
the earliest to present formulas for the basic properties su : . . )
) X causes the first-order terms to vanish, leaving the harmonic
as the equation of stdtéut, as pointed out by Robledo and ; .

. 3 : . system as a natural reference. Corrections are then applied by
Rowlinson; the earliest solution was presented by idering hiah der t in th ion. This i i
Rayleigh? It is now widely known that the van der Waals considening higher-order terms in the expansion. This 1S no

. : Sltwable route to the study of hard potentiéssich as hard

the van der Waals contribution to the pressure due to repuf—Odg' because these potentials are not analytic. We deal in-

sion is exactly that of the hard-rod systéfOther proper- Stead with an approach that is couched more in the language
ties known analytically for the hard-rod model include the ©f flid-state theory. We are concerned with the singlet, pair,
pair and higher-order correlation functions for the pure@nd higher-order correlations of the “normal-mode coordi-
systenf and mixtured#Y7 the behavior in confined Nates” occupied by the phonons. For the harmonic system,
space$® 1 and in the presence of other external fieltls, the singlet distribution is simply a Gaussian, and there are no
and various dynamical properti€Most recently, Corti and higher-order correlations between the other modes. To the
Debenedett as part of their studies of thermodynamic €xtent that these distributions are similar in a harmonic sys-
metastability turned to the hard-rod model for insight on thetem and a system of interest, we have a viable means for
nature of voids(regions of space with no particles pregent estimating the target system’s properties via molecular simu-
that arise as part of the natural fluctuations in fluid systemdation. We reserve the details of this method for a separate
One of our research interests lies in the development apublication. Instead we present here our exact solution for
methods for computing free energies of solids by moleculathe singlet normal-mode coordinate distribution for the hard-
simulation. One of the avenues that we have explored infod model system.
volves the use of a harmonic reference system, in which all The harmonic and hard-rod systems are very much un-
interactions between the patrticles in the system take the forriike one another, and in fact they lie at the extreme limits of
of simple harmonic springs. As is well known, the propertiesthe Toda latticé, which is an integrable one-dimensional
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model that has been very helpful in understanding nonlinear L

lattice dynamics. We do not pursue the more general Toda

lattice in our work because our ultimate aim is to apply the d

insights from the present study to develop molecular simula- - M

tion methods for three-dimensional systems. The harmonic Xy % X3 xy L

system retains its simplicity when extended this way, but the

Toda lattice does not. FIG. 1. System oN hard rods of equal lengtth and total system length.
We begin in Sec. Il by reviewing the treatment of har- The system is bounded by walls of infinite potential at O &nd

monic systems, doing this mainly to establish the notation

we use in subsequent sections. Then in Sec. 1l we review the

hard-rod model and the solution for its partition function, ywhere ), is the mth diagonal element of\. The normal-

and we consider a way to obtain simple statistical measuregode coordinates; are simple linear transformations from

of the normal-mode correlations in the hard-rod systemihe real-space deviationsand are obtained from the eigen-
Then in Sec. IV we present the analytic solution for theyectors ofH,

normal-mode singlet distribution, discuss the results in Sec. .
V, and provide concluding remarks in Sec. VI. =P "y, )

where® is the matrix with columns given by the eigenvec-
tors ofH and, becauskl is symmetricd " *=®T; also® is

Il. DESCRIPTION OF A SYSTEM OF HARMONIC symmetric with elements
OSCILLATORS 12
2 [ kma
We consider a system & harmonic oscillators in one Pmic= N+1 sin N+1)’ ©

dimension with only nearest-neighbor interactions. A con-

-1_
figuration is described by the vector of coordinates sod "=®. : . T
={X1,Xz,....Xn}, Wherex, is the coordinate of th&th os- The normal-mode singlet density distributign(7m)

cillator (x is the transpose of vectod. The energy for a des(;:rlbes tg_e dlstnbul'gon of"va_lues adbopted by thz normal-
given configuration is mode coordinatey,,. Formally it may be expressed as an

ensemble average
N+1

U=U0+W2 (Xk_xk—l)z- (1) Pm( 1) =(S(7m— 1)), (7)
k=1 whered is the Dirac delta function. For the simple system of

Here we identifyW as the strength of the harmonic in- harmonic oscillators, this distribution function is a Gaussian

teraction, which is the same for all pairs. Also, we bound theVith Zero mean

sys;em by fi?<ed walls, which for notgtional simplicity we pﬁqa"”( ) = (7N~ Y2exp( —\m7?), @)
assign coordinategy=0 andxy ., =L. Itis much more con-

venient to work with the coordinates that describe the deviaso the variance in the distribution of the coordinatg is

tion of each oscillator from its meafor minimum-energy ~ given directly by its eigenvalue(n%)=(2\,) "% the
position xY=kL/(N+1): y,=x,—xy. This step introduces normal-mode coordinates for the harmonic system are uncor-
new constant terms that can be lumped with but since all ~ related, i.e.{7y,7)=0, m#I, which is why they are desig-
these contributions are not important to the present develograted “normal modes.”

ment we will drop them entirely. Then the energy may be

written

lll. HARD-ROD MODEL AND SECOND-ORDER

_ T
U=7yHy, @ CORRELATIONS

where vy is the vector of deviation coordinates ahdis an We consider a system of hard rods of equal lengthx

NXN tridiagonal matri_x with diagonal elements equal t0 j,q,nded by hard wallgof infinite potentia) separated by a
+2W and secondary diagonal elements equal-1¢/. distancel as pictured Fig. 1.

Diagonalization of the above quadratic form resultsinan e could just as easily have worked within periodic

expression for the energy in terms of tNe‘normal-mode” ), ,nqaries. Note that the coordinadespecifies the position
coordinates that we designaté ={7,,7,,...,7x}, thus of the right-hand side of the rod. The configuration integral
U=y"Am, 3) for the hard-rod system is given by

1 (L L L L
where A is a diagonal matrix of eigenvalues b, and the QHRsz def de,l---f dxzf dx;exp— BUur),
simplicity of the original quadratic form permits their direct 70 0 0 0
determination, ©)
whereU g is the energy of the system, which is infinite if
there is any overlagincluding overlaps with the wallsand

zero otherwise.

_y mar
Am=2W| 1-cosgo—], (4)
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The usual route to solving the partition function involves
ordering the rods as suggested by Fig. 1, so thatx; for
k>j. This eliminates the degeneracy fachdr and changes
the limits of integration for each rod,

3*0’ X2*0’
dx, dxy.
o

’ (10

X

L XN~ O
QHRZI dXNf dXN—l"'j
No (N=-1)o 2

I T
The Boltzmann weighting can be removed because the
limits of integration preclude any overlap. A change of co-

ordinates is now applied

Yk=Xk— ko, 11

so the partition function becomes

L—oN YN Y3 Y2
QHRZJ dny dyN—l"'f dY2f dy;. (12
0 0 0 0

The nested integrals are now easily evaluated, yielding

(L—aN)N

NI (13

HR™

C. D. Barnes and D. A. Kofke
1 L—oN YN
(YYo= _J dny dyn-—1"°
Qur Jo 0

Yk+1 Yi+1 Y3 Y2
><f dykyk---f dy;yj--'J dsz dy,
0 0 0 0

j(k+1)

=N DNz LN

k=j. (16

hen
(7710 = (XX — (X ){Xi)
=YY =YY

_[L=0oN\?j(N+1—k)
S\ N+1 N+2

(17

=].

We now make our first connection between the hard-rod
model and the harmonic system reviewed in Sec. Il. We
consider the normal-mode coordinates introduced in Sec. I,
but we examine statistics for them when ensemble averaged
over the hard-rod configurations. The normal-mode deviation
coordinates are still defined in terms of the real-space devia-
tion coordinates as in Eq5), and it is clear that the mean
value of the normal-mode coordinate,,) is still zero for all
m. We turn then directly to second-moment averages of these
coordinates. These may be obtained from the results just pre-

Various statistics about the hard-rod positions and correlasented for(y;y) via the transformation

tions are of interest. It is easier to derive them in terms of the

convenience coordinatgdefined in Eq(11) and then trans-
form the averages to the real coordinatesThe averagey
value adopted by thkth rod is

1 L-oN YN
(Y= _J dny dyn-1""
Qur Jo 0

Yk+1 Y3 Y2
><f dYkYk"'j dyzf dy,
0 0 0

=m(L—0N), (14
so the averag& coordinate is
(X =(Yi) + ko
——(L+ o). (15

T N+1

which, as one might expect, is roughly the corresponding

fractional distance to the end of the system’s length.
Again it is convenient to assign each rod a “lattice-site”

coordinate and focus on the statistics associated with devia-
tions from this position. We do this even though the hard-rod

(nq")y=®(yy")® (18

(in writing the result this way we have applied some of the
simplifying features ofd). Inserting the result fof y; yx)
and Eq.(6) for @, after some manipulation thgo)variance

of the normal-mode deviations is given by

B 1 L—oN]?
<77m77n>_ Nao1 N+1
(N+2) COSm
mm jn7T
XE sln'\Ile N1 (19

The very surprising result of this analysis is that all the
second-order statistics for the distributions of the normal-
mode coordinates are the same in the hard-rod system as in
the harmonic oscillators for which the coordinates are de-
rived. Form#n in Eqg. (19), the sine functions are orthogo-
nal so the summation is zero, and therefore the covariance is
zero. Form=n, the sine functions are of course equivalent
and the variance is given by

(N+1) L—oN]?

N+1

(nf)= (20)

2(N+2)| 1- cos—

N+1

system does not form a true crystalline phase. As with thénterestingly, these statistics and those from the harmonic

harmonic system above, we define the lattice site forkrad

system differ by the same multiplicative constant (

its average position, and introduce the deviation coordinates oN)?/(N+2)(N+ 1) for all m, which means the hard-rod

=X (X); obviously( ) =0.

averages could all be made equal to their harmonic counter-

Likewise, the average pair correlate is given from theparts by appropriate selection of the harmonic spring con-

two-body average

stantW.
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IV. NORMAL-MODE SINGLET DISTRIBUTIONS 1 o

1
_ o P(7)= 5 ~_dtexgfit(»+ 7p) QN (L,Y)
We now turn to an analysis of the detailed distributions ™ Q

of the normal-mode coordinates averaged over configura-

! . 1 .
tions of the hard-rod system. Here differences between the = Q—Q(N”‘)(r;+ 75.Y), (27)
hard-rod and harmonic systems begin to emerge. HR
We start with the description gi,(#) as the ensemble- where the caret indicates a Fourier transform of the first ar-
averaged delta function given by gument ofQ{” . The recursion relation forms a convolution
1 (L-oN ™ that yields to application of the Laplace transfofof the
Pm(7)= —f dyNJ’ dyn_1 second argument @\ ; the Laplace transform is indicated
Qur Jo 0 by a tilde:
y y _=
% | ay. | ays a0 mmion. (2) LIQI™ (ty)1=Qi™ (1)
0 0
1~ _
We will introduce the linear transformation that gives the = EQ(kT)l(t’S+|t¢mk)- (28
normal-mode coordinate in terms of the hard-rod conve-
nience coordinatey, Repeated application of this formula with an obvious
termination condition ak=1 produces
TnY) =2, bmicr(Vid . e
e QA ts)=TIT (s+ita™) 2, (29
N ’ k=1
= k§=:1 ¢m k( Yk— mY (22) where
N
where we have defined A&WEJZK brmj
Y=L—-oN. (23 o |12
_ A k_ey step_in the development is Wr_iting the delta func- “INF1
tion in its Fourier transform representation
_r{m'ﬂ(k-i- N) _r{m’ﬁ(N-i-l—k)}
© [ i
= itx 2(N+1 2(N+1
8(X) Loe dt, ( ) ( ) , (30
. mar
where i=+—1. With these transformations the singlet sin 2(N+1)

normal-mode density distribution can be expressed - . . .
y P where the latter equality is obtained as a trigonometric iden-

tity.
Before performing the inverse transform it is important
to note that terms inside the product may be degenerate. We
. y2 _ let A, k=1---N<N+1 be the unique values &™ and
xexq—|t¢mNyN]”'J’0 dysexd —itémyil, e |nd|cate their degeneracy Ai™ by w, ; Eq.(29) can be
rewritten as:

(24) _
h N
where QUM (t, s)—H (s+itAl™) ek, (31
0_
Tm=N¥1 k§=:1 PmiK. (25 The general solution for the inverse Laplace transform of
Eq. (31) is'®
The task now is to develop a means to perform the (m 1AM
nested integrals over thecoordinates. This can be accom- QN (1Y) =L QN (t,5)]

plished by casting them in terms of a recursion relation:

g wg C&T)y(wkﬂ) e—itYKﬁm) @
Q&””(t,y):fydykexp[—itqsmkyk]-"fyzdyl E1 L (o D=1 T
0 0
_ where
X eXF[ —It ¢m1y1] —
y (m) i . A(m)
. M= + AlMy—w)
- [ avent-itenpaemieyo, @ O I [ggrmll et @3
SO These coefficients foy=1 are not particularly difficult,
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N while for m odd, onlyj=1 is needed, and the inverse trans-
C(k"f)=H (Xfm)—Xf{”))*‘”'. (34)  form may be written directly
T N
| . m
() =(i) NS cMe A" (m odd. (36)

B

=
Otherwise the’:f{‘}) coefficients can be treated via a recursion
relation, but the computer code that results is not very effi- . _ o
cient. In general, great variation in the degeneracy may be The.smglet den§|ty_d|str|bqt|on IS finally recovgreq by
observed from one term to the next and it is difficult to performing the Fourier |ntegrat|o(n )Wlth respectttas indi-

. o m
identify a pattern in this behavior that might be used to spee&f‘rtned in Eq.§27). r-:—,hﬁ tﬁrms INQy (t,Y; arefof the form
up the calculation. However, the form of the degeneracy id  €XP(bt), for which the Fourier transform fromto 7 is
particularly simple if we restricN such thatN+1 is prime. (p+b)" 1
We demonstrate in the Appendix that in this situation all of —(n— 1)
the elements oA(™ are nondegenerate whemis odd, and . o _
all elements but one are doubly degenerate whes even.  Where® is the Heaviside function.

—%+(77+b)). 37

In particular, Thus the singlet distribution is a sum of polynomials in
_ — 7, each with its own Heaviside function that “switches on”
A=A, k=1--N=(N+1) (m odd), at a particularp=—b, whereb is in general different for

and each term of the sum. The net effect of the Heaviside func-
_ tion (when added to-1/2) is to change the sign of the coef-
A=A =A,_\, ficient of the corresponding term in the sum. Rplarge and

— negative, all Heaviside functions are “off,” and we have a
k=1---(N=1)=(N/2) (m even, simple sum of polynomials; fop large and positive we have
K(km):A<km> , k=N= (N/2)+1. the same polynomial sum but with the opposite sign. Clearly
the probability density must be zero for sufficiently large
In practice restrictindN this way barely reduces the general- positive or large negative values gf so we must conclude
ity of the development, so we proceed from here using thighat this polynomial sum is identically zero. We have not

simplification. . N ~ attempted to otherwise demonstrate this result analytically,
Then form even thej=2 coefficients are needed in put we do find it to be true empirically. A consequence is
addition to those foj =1, and Eq.(34) becomes that we may drop the-1/2 from Eq.(37). Upon taking this
step we put together all the foregoing developments to arrive
c{(@: _cf(f? (AU — A{™)~1 at our final working expression fqu,(7),
1 p N
N/2+1 Pm( ﬂ)z—ﬁ > CiW(p+nd—YAMNL
(M a(my—1 Qur ( ) =1
+2 > (AM—A{™) (m even, (35
=d XO(n+75—YA™) (m odd), (39)
1
Pm(7)==—
HR

o[y oy
2 (((N_'Z). D (7 I YA |G =Y ATON 20 (= Y AT
B ' ' _ (m even.
(= VAT
- (N—l)| Cl<\ln;2)+l,1(7’+ n?n_YAg\IT2)+l)
(39

Again, this result applies fol+1 a prime number. In to zero;N is the number of hard rods, and so is also the
summary, the terms appearing in this equation are as folRumber of modes.
lows: Qur is the hard-rod partition function given by E®);
C{™ andC{ are given by Eqs(34) and(35), respectively,
and are functions of the mode and indexk; nﬁ1 is given by
Eq.(25), Yis given by Eq(23); A(km) is given by Eq(30); © Plots of the exact solution for the singlet density distri-
is the Heaviside function and is zero when its argument iution for systems oN=4, 10, and 22 rods are presented in
less than zero and unity when its argument is greater or equé&igs. 2—4, respectively. Plots for larger valueshobecome

V. DISCUSSION
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20 i
— Hard Rod {J;
-------- Harmonic

- m=4 16 ~|

14
15—
12 -

104 — Hard Rod

o4 KN~ | Harmonic

Pmlm)
P
T

-0.2 -0.1 0.0 0.1 0.2
n -1.5

FIG. 2. Singlet normal-mode density distribution for a system of four hard

rods of widthd=1 at a densit\Nd/L of 0.95 shown with the corresponding FIG. 4. Singlet normal-mode density, as presented in Fig. 2, butNfor
harmonic distribution of the same variance. The four sets of curves corre= 22 particles. At this scale the hard rod and harmonic curves are virtually
spond to each of the four normal modes, where 1 is the lowest fre-  indistinguishable.

quency mode(longest wavelengbhand m=4 is the highest frequency

mode.

each pointyp=by where a Heaviside function is turned on,
increasingly difficult to construct. The distribution function but the discontinuity appears only in the—1 derivative.
is given by a sum ofNth order polynomials, which tend to A careful look at the distributions fal=4 shows that
offset each other ag increases, eventually canceling exactly the curves fom odd appear to be symmetric, while those for
for » beyond its maximum value. Ag approaches its maxi- m even exhibit asymmetry. For larg®t the asymmetries
mum, roundoff errors in summing the polynomials cause dif-appear to be attenuated, and it becomes increasingly difficult
ficulties in computing the density distribution. However, asto distinguish the hard-rod distributions from Gaussian
discussed below, results up d=22 are sufficient to un- forms. More about the symmetry of the distributions can be
cover the trends in the behavior of the distribution function.uncovered by examining their behavior at the two tails, just
In each plot curves are shown for several values of the modeefore they become zero &g increases. On the left-hand
numberm; for N=4 the correspondingGaussiahdistribu-  side, p(#) is given by the polynomial multiplying the first
tions for a pure harmonic oscillatgwith spring constant Heaviside function to be turned on, while on the right-hand
selected to result in the same varianaee presented in Figs. side the distribution is given by the negative of the polyno-
2-4. The hard-rod distributions appear to be very smoothmial multiplying the last Heaviside function to be turned on
even though at many points they are nonanalytic. Thebecause turning this last term on exactly cancels the part
nonanalyticites come from terms of the formzy( before the distribution is zeyoFor m odd, the distribution
—bo)N 1@ (7—by), so the distribution is nonanalytic at just before it vanishes on the right-hand side is

— 1 0 _ (mM)y(N—
pm( 7])_ (N_l)IQHR Cmin,1(7]+ Mm YAmin)(N 1)!
(40)

16 —
—— Hard Rod
F7 I Harmonic

while on the left-hand side
12

_ 1 0\ Ay (N-
Pm(7) = (N_l)!QHRCmaX’l(TI+ Mm YAmax)(N b,
(41)

Pm

where “max” and “min,” respectively, refer to the values
for k for the largest and smallest values Af™ . We find
empirically  Cpyin1=Craxs  and (=Y A=~ (7%,
—YAM), indicating that then-odd distributions are symmet-
ric in terms of their vanishing points and their behavior ap-
proaching these points. Fan evenA{™ is the maximumA

for k=N/2+1 if m/2 is odd, while thisk gives the smallest
FIG. 3. Singlet normal-mode density, as presented in Fig. 2, butfor A if M/2 is even. In either case, the distribution at the other
=10 particles. end vanishes according to
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1 0.6—‘
_ C + 29—y AMY(N=2)
pm( 77) (N_l)lQHR[ k,l(77 77m Ak ) 04~
+Cieo 7t 7= YAT) N Y], (42 0ad

The point is that the neither the vanishing point nor the func- = 0.0 V
tional form near the vanishing point is symmetric in this %E
case. Based on this limited observation of the analytic form 02
of the distributions, along with the observed shape of the o4 _
complete distributions, we would judge the distributions for ' m ;;
m odd to be completely symmetric about the origin, while 06 - m=3
those form even are not. m=4

We can speculate on the origins of this symmetry behav- 0.8 -
ior. We note that the normal modes correspondingitodd ‘ 1
describe collective modes that are symmetric about the cen- 0.2 0.2

ter of mass of the system, while the modes corresponding to

m even describe motions that are antisymmetric about thi§IG. 5. Difference between the hard rod and harmonic and singlet normal

point. Connected to this, and more important, is the numbefnode density distributions for the system of four hard rods shown in Fig. 2.

of nodes associated WitI”1 each collective mo£ion The node‘léhe axes are scaled by the variance of each distribution. The curves for
. L o . =1 andm=3 are indistinguishable.

are points where the deviation of the rods from their lattice

sites changes sign. Thus each node represents a point at

which the rods locally are being compressed or expanded;q),e ofN used to construct the plot. In the thermodynamic
For m odd, the number of such nodesesen meaning the  |imjt || singlet normal-mode density distributions adopt
number of compression points is the same regardless of g5 ssjan forms, with variances distributed exactly as in the
sign of 7; for m even the number of nodes &ld so the  p5monic system. Differences between the hard-rod configu-
number of compression points depends on the sign &r  a4ions and those of the harmonic system must manifest
a harmonic system, compression and expansion of the pafremselves at the level of two-“body” and higher correla-
ticles is the same in terms of the energy cost, but for hardiong among the normal-mode coordinates. However, given
rods there i§ obviously a severe energy asymmetry betwegf,t the normal-mode covariances are Z&q. (19)], coop-

the two motions. erative behaviors at the pair level are not likely to show

The analysis of Sec. Ill indicates that the hard-rod norm ch it any, deviation of the distributions from the har-
mal mode distributions have variancéand covariancgs monic forms.

identical to the harmonic system that defines the normal  gina)ly we consider the effect of density on the results.
mode coordinates. This result suggests that comparison gf Fig. 8 we present the limiting form of variance- and

the behavior of various modes for a givehcan be facili-  yaticle-number-scaled singlet-density deviation, as a func-
tated by scaling all normal-mode coordinates by the correggy of the system densitiNo/L. We observe the same

sponding variance exhibited in the harmonic system. If the, 5jitative behavior over all densities. As the density is in-
hard-rod normal-mode singlet distributions were identical to

those for a harmonic system, then this transformation would
cause all the distributions to collapse onto a single Gaussian

. ) i ; 0.20 All Ten Modes Shown

curve of unit variance. To highlight the difference from har-
monic behavior, we examine in Figs. 5 and 6 the difference 015
in these scaled distributions from the unit-variance Gaussian, 0.10
for N=4 and 10, respectively. For giveM, the scaled dis- 0.05
tributions form odd are mutually identical. Although fax
=4 the scaled curves fam even do not show a common & 0.00 \/'
behavior, as\ grows these curves all approach the common :§ -0.05
distribution form odd. As shown in Fig. 6, foN as small as N 010
10 all the scaled distributions are virtually indistinguishable '
from one another. <015

Figures 5 and 6 also provide some indication of the size 0.20
dependence of the scaled distributions. The maximum devia- 025
tion is of the order of 0.6 foN=4, while for N=10 it has ’
diminished to about 0.2. This observation suggests a simple -0.30 T T ]
N dependence of the scaled distribution. In Fig. 7 the 0.2 01 3}30 01 02

variance-scaled distributions are multiplied by and the
reiultlng cErves are pr_esented for several valuel lﬁfo.m IG. 6. As in Fig. 5, but foN=10. The differences between the odd and
N=4 t.O N_2_2- There is a clear convergence to a universakyen modes which are very apparent in Fig(f@ur hard rods are now
behavior which seems to be almost reached at the largessésentially indistinguishable.
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source of anharmonicity. This work suggests that a viable
route to modeling the behavior of real solids from a har-
monic reference would consider perturbations in their
normal-mode density distributions rather than in the intermo-
lecular potential.

APPENDIX

Here we show that fol+1 prime andm odd, the sum-
10 mationsA{™ of the eigenvector coefficients{™ for j =k to
‘ 18 N+1 are unique for alk31<k<N+1, while for m even,
25 \7 22 the summations are doubly degenerate for the same range of
k except wherk=N/2+ 1, for which the summatiod{T), ,
is unique.
Manipulations using trigonometric identities transform

FIG. 7. Scaled diff bet the hard rod and h o I'ghe expression foA(km) given in Eq.(30) into a form more
. cale Irerence between e hard rod an armonic singie Ser| fOI’ thIS analysis; in the end we have

normal-mode density distributions various system sizes. Difference aré’I
scaled by particle number as indicated. The systems converge to a limiting 2 1/2C0${a] —coga(2(N—k+1)+1)]
curve with increasing system size.
N+1 2sifa] ’
(A1)

_creasec_i, the s<_:a|e_d deviation increases in_ mz_agnitude_ reﬂe%herea:mw/Z(NJrl). The onlyk-dependent term in this

ing the increasing n_nportance of the repulsive interactions Oréxpression is coa(2(N—k+1)+1)] so any uniqueness or de-

the hard-rod behavior. generacy with respect tk derives from this term, and we
need consider only it in the subsequent analysis.

V1. CONCLUDING REMARKS Whenever the cosine functions are equal for different

The hard-rod model represents a highly anharmonic systalues ofk, A(krin):A(krjn) , there is a degeneracy. There are two
tem. The hard-rod potential cannot be expanded as a powegses to check. First, if the arguments of the cosine differ by
series in the pair separation as is usually done to connect a@n integer multiple of 2, their cosines will be equal. Sec-
anharmonic system to a harmonic reference. Yet the modeind, cosine is a even function, so that [tds-co§—b
exhibits at a basic level, behavior that conforms completely+2mq] for g any integer including zero, and degeneracy may
to that of a harmonic system: all of the singlet normal-modearise this way.
density distributions are exactly harmonic in the thermody-  Consider the first case. There will be degeneracy for two
namic limit, and all the second-order correlations follow har-values ofk, k; #k; , if
moni(_: behavior as well. Re_pulsion is an important feature of a(2(N—k+1)+1)—a(2(N—k +1)+1)=2mq,
real intermolecular potentials, and is usually the largest !

22222

0.0 0.1 0.2
n/c

A=

q=...—2-112... (A2

which simplifies to

2q
kJ_kI:(N—i_l)m
The difference ink's, k;—k;, must be an integer, so the
right-hand side must also be an integer if there exist two
values ofk that satisfy this relation. If we choosd+1
prime, there is no rational numbéess than unityby which

it can be multiplied that would result in an integer, so the

o(1-NGIL) 4p,(n)

Density, Nd/L

— 0.95

quantity 23/m must also be an integer. Since battand m
are integers, this requires thate an integer multiple ofn
for m odd, or an integer multiple aih/2 for m even. In any

case the smallest possible value for the right-hand sidé is
+1, but at the same time the largest possible magnitude for
the difference ink's is N+1—1=N. Obviously the differ-
ence ink's cannot simultaneously be less than or equallto
andgreater than or equal t8+ 1, so we conclude that there
FIG. 8. Scaled difference between the hard rod and harmonic single?XIStS no pair ok values for which the respective arguments

normal-mode density distributions fot=22 at densitiesNd/L) of 0.95,  tO the cosine differ by a multiple _Ofﬁ (for N+1 prim@-
0.80, and 0.60. The curves are scaleddifst —Nd/L) as shown. For the second case there will be degeneracy if

6x10°

2 0 2
n/(o(1-Nd/L))
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—a(2(N-kj+1)+1)+2mg=a(2(N—-k+1)+1),
q=...,—2,-1,012,..,

(A3)
which simplifies to

N+1
kj+ki=2T(m—q)+1. (A4)
Sinceq can represent any integer, the term-{q) can take
on any integral value, so we simply replace it dpyand the
equation becomes

29
kj‘f’ki:(N‘f‘l)F‘f'l. (AS)
Again, choosingN+1 prime, and following the same

arguments for the first casg must be integer multiples oh
for modd, and integer multiples @f/2 for m even. Now we
have a sum of twd's, the largest possible value beimg
+1+N=2N+1. Form odd the smallest possible value of
the right-hand side occurs fag=m, which leavesk;+k;

C. D. Barnes and D. A. Kofke

Note that sinceN+1 is prime,N is even, sdN/2 is an inte-
ger. From this set it can be seen th&{",=A{" A{"
=A(2m) , etc. Form even, all the terms are doubly degenerate
with the single exception of th&l/2+1 term, which is
unique. There is no triple or higher degeneracy.

We have shown that by choosimgt+ 1 prime, the sum-
mations of the eigenvector coefficients are unique forkall
for m odd, and are doubly degenerdsymmetrically about
N/2+1) for m even for allk with the exception of thé/2
+1 term, for which the sum is unique.
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