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Freezing of polydisperse hard spheres
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Freezing of polydisperse hard spheres is studied by Monte Carlo simulation and the results are interpreted
with a cell model of the solid. The results supplement an earlier study of freezing of nearly monodisperse hard
spheres and, within the assumption of a substitutionally disordered solid, a complete description of the freezing
behavior is obtained. The density and polydispersity of the precipitate are characterized by a single curve,
regardless of the composition of the fluid from which it is formed. Fractionation enables a fluid of arbitrary
polydispersity to precipitate a solid of small polydispersity, dispeling the long-held notion of a fluid-phase
“critical” polydispersity, beyond which it cannot form a solid. Nevertheless, a primary conclusion from the
previous study is confirmed: a solid crystalline phase of polydispersity exceeding 5.7% of the average sphere
diameter cannot be precipitated from a fluid ph4S4.063-651X%98)04312-§

PACS numbe(s): 64.70.Dv, 61.20.Ja, 64.60.Cn, 82.70.Dd

The freezing transition of a system of pure hard spheres It is important to understand how the terminus arises in
was demonstrated by some of the earliest molecular simulahe simulation study. In the semigrand ensemble an indepen-
tions[1], and the precise location of the transition was laterdent variable is the distribution of chemical potential differ-
determined by free-energy calculatioi®. The hard-sphere encesAu (o), or activity ratiosa(o) =exp(Au(o)), where
model provides a crude but reasonable description of the is the hard-sphere diametéo simplify notation we take
behavior of some colloidal systerf3], and an ordering tran- unit temperature KJI This distribution is imposed on both
sition that has been observed in uncharged monodispergéases, thereby ensuring equality of all species chemical po-
colloids is consistent with the hard-sphere behayig].  tentials as long as the chemical potential of an arbitrary ref-
Real colloidal systems often comprise spheres of varyingrence species is made equal in the two phases. This require-
size, and the effect of this polydispersity on the orderingment is met by the GDI procedure via selection of an
behavior is not well understood. The influence of polydisper-appropriate value of the coexistence pres<gatso imposed
sity has been examined with thed], molecular simulation 0n both phasgsThe imposed activity distribution is Gauss-
[7.,8], and experimenf5]. A general conclusion from all of ian with variancev, which thereby becomes the variable
these studies is the existence of an upper limit on size polydsed to control the polydispersity. The GDI method traces
dispersity, a “terminal polydispersity” above which no crys- the locus of states in theP(») plane for which the solid and
tallization can occur. If the polydispersity is defined as thefluid are in equilibrium. The initial condition for the integra-
standard deviation of the size distribution divided by thetion is the monodisperse limit;— 0, at which the coexist-
mean, then the various studies indicate that the terminagnce pressure is known. Integration proceeds in a direction of
polydispersity is in the range of 5-15%. Almost all studiesincreasingv. As the activity distribution becomes less sharp,
based in theory or molecular simulation invoke some asthe mixtures become increasingly nonideal, and the compo-
sumption regarding the distribution of particle diameters besition distribution migrates away from the imposed activity
tween the two phases, typically taking them to be identicaldistribution. The shift in both phases is toward smaller diam-
In principle, this approach is incorrect, as phase equilibria ireters.
mixtures generally involve some fractionation, with compo-  Eventually the integration path bends back, and the coex-
nents of the mixture distributing themselves unevenly beistence pressure grows without bound as the parameter
tween the phases. This “constrained eutectic” approxima+teturns to zero. The resulting distribution of diameters is
tion is reasonable only for small polydispersity. such that most spheres are vanishingly small. Nevertheless,

We recently reportefi8] a molecular simulation study of physically relevant results can be recovered by scaling all
the freezing transition of polydisperse hard spheres. Thesguantities by a mean diameter. In particular upon rescaling it
simulations were conducted in a semigrand enserfthl)] is found that the polydispersity continues to incre@sspite
and employed the Gibbs-Duhem integrati@DI) technique the decrease i) and the pressure remains finite. As this
[10,11] to follow the coexistence behavior as a function of regime takes hold, the interpretation nfas a measure of
size polydispersity. The study provided an essentially exagpolydispersity becomes inappropriate. The diameter distribu-
description of the freezing transition, and it found that frac-tion is highly skewed away from the imposed Gaussian ac-
tionation begins to show at a polydispersity of approximatelytivity, and is so narrow that the chemical potential distribu-
3%. The study also indicated the existence of a termination is essentially linear across it. Henecan be interpreted
polydispersity which, due to fractionation, is different in the only as(the reciprocal ofthe slope of this linear distribution.
solid and fluid phases: 5.7 and 11.8 %, respectively. The system is analogous to one in which Hookean springs
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attempt to push the spheres to larger diameters, while thecaling formula that relates the pressure to the moments of
external pressure constrains them to finite values. The singliae composition distributiofl3]. For theA u distribution of
state parameter for this limiting system is the ratio of theEq. (1), this relation is
pressure to this “spring constant.” Only one value of this
ratio is consistent with solid-fluid coexistengest as only 3(P/p—1)=1+c4S;+2CyS,+3C5S3, (3
one pressure is possible for coexisting solid and fluid mono-
disperse hard sphejehence when the limit is reached no where p=1/ is the number density. In the semigrand en-
further variation is possible and the coexistence line termisemble the moments are not knowarpriori so this formula
nates. is not a self-contained equation of state, but it is useful none-

In this paper, we extend this integration procedure fromheless.
the previously identified terminus by imposing a chemical-  Several integration series were performed, differing in the
potential distribution containing quadratic or cubic terms inchoice of integration path and the method for characterizing
the sphere diameter. Interestingly, this process finds that th@e fluid phase. In some series simulation was used to char-
saturated solid phase becomes increasingly monodisperggterize both phases. In other series we applied the hard-
and close-packed while the saturated fluid adopts increagphere mixture equation of Mansoet al. [14] (MCSL) in
ingly large polydispersity, i.e., fractionation increases. Thelieu of simulation of the fluid. We used the fluid-phase equa-
narrowness of the solid-phase diameter distribution permitgion of state because we were concerned about the ability of
its chemical potentials to be well characterized by a lineathe fluid-phase simulations to converge at high pressure. Of
form, so the higher-order terms in the chemical-potential discourse, the validity of the equation of state may be ques-
tribution have their greatest effect on the fluid phase onlytioned in this regime too. Simulations of the solid and fluid
This outcome imbues the study with a generality we discusphases were performed with system sizes of 256 or 864 par-
below. ticles in each phase. In each simulation 20000 simulation

Before continuing, it is worth remembering the notion of cycles were performed, where one simulation cycle com-
equivalence of ensembld42], which permits us to study prises one translation attempt and one diameter-change trial
polydisperse hard spheres as though the diameters were fluser particle(on average; trial particles were always selected
tuating under the influence of “internal springs” and still at randon.
draw conclusions about the coexistence behavior of real col- Two series were performed from tlog terminus. In one
loidal Spheres each of fixed diameter. The device of ﬂUCtUthe C, coefficient was increased from zero Wmh]_ fixed at
ating the diameters facilitates the phase-coexistence calculgnity (thereby setting the length scalén another series the
tion, and should be viewed as the sampling of differentc, coefficient was instead increased. Theseries terminated
physical regions of the solid and fluid; for this analysis to benaturally (with czlci—wo) much as the original serid$]
valid it is by no means necessary that the spheres in the reg|q At this new terminus a seconcty series” was initiated,
system actually fluctuate in diameter. o using the MCSL equation for the fluid phase. Bathseries
_ We conduct our Monte CarléMC) simulations in the \yere extended to the point where the approach broke down,
isobaric semigrand ensemble, for which the distribution ofgjiher pecause the MCSL equation of state had no solution
chemical potential differenceSw is an independertfunc-  ¢or the givenAp distribution, or because the simulations
tlon.al).parameter. We. are interested in including terms up tQyqre extremely sluggish at convergiigwing to the high
cubic in the sphere diameter density of the simulated flu)d

In Fig. 1 results are presented in the volume fraction-
polydispersity plane. The original; terminus and the new
— B . _ _ C, terminus are indicated. Several tie lines joining coexisting
The identity of the “reference” diameter, against which the g,iq and solid phases are presented as well. Two features are
difference is formed, is not important and for conveniencegiapie. First, the fluid-phase curves differ with the choice of
we take it to be zero. The, terminus identified iri8] cor- jnegration pathi.e., whetherc, is integrated before initiat-
responds ta; =1 with c,=c3=0 (herec, sets the length g the ¢, integration. This, of course, is not a surprising
scalg. To depart from this point we apply the GDI method tcome. The coexistence density and polydispersity should
[10,11 to follow the coexistence line & or ¢z is increased e expected to depend on details of the imposed chemical

AM(O’):C10'+C20'2+030'3. (1)

from zero. The governing Clapeyron-like equation is potential distribution. Therefore, it is surprising that a corre-
sponding difference is not observed in the coexisting solid.

d_P: ﬁ ?) All solid-phase coexistence curves are practically indistin-
de, Av’ guishable. The second feature worth noting is the behavior of

this “universal” solid-phase curve. In all cases the integra-

wheres, is thekth moment(about the originof the diameter tion proceeds to a solid that becomes increasingly monodis-
distribution, v is the volume per molecule, and the indi- perse and increasingly dense, approaching a pure, closed-
cates a difference between the two coexisting phases. Boghacked solid phase. This limiting solid is in equilibrium with
guantities are measured by the MC simulation, and a highly polydisperse fluid. It must be emphasized that be-
predictor-corrector procedure is applied to integrate this diffore this limit is reached it is likely that the fluid-phase data
ferential equation, as described elsewh&&0,11. becomes compromised, perhaps by the onset of a glass tran-

The volume integral in the isobaric ensemble average caaition, and almost certainly by limits of the convergence rate
be evaluated analytically, so MC sampling of the volume isof the simulation; thus at some point the fluid-phase data
not necessary8]. A closely connected result is an exact must be viewed only qualitatively.
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TABLE I. Coefficients describing the composition moments, as
determined by the cell model and by MC simulati@xtrapolated
to infinite system size Numbers in parentheses indicate the confi-
dence limits of the last digit of the value.

1.40

1.30 -

1 o) ds
1.20 | Cell model 4 4 -8
Z—f Simulation 4.00002) 6.5472) —7.80(4)

110 F

Whereacp:(\/ilp)l’?’ is the nearest-neighbor separation for
a lattice of densityp, and oya=20¢,—$; is the maximum
diameter without overlap; alsép =42 is the volume of a
rhombic dodecahedron for which an inscribed sphere has

090 — 00 o Y unit radius;og is a unit diameter that serves only to make the
s partition function dimensionledd7], and A is the thermal
wavelength.

FIG. 1. Coexisting fluid and solid phases in the volume fraction - o e
; . - L In the close-packing limit the slope, becomes infinite,
(ps;)—polydispersity plane. Tie lines connect a few coexisting

phases. Both thel (open circlesand thec, terminus(squaresare and the average diametsy approaChegjcp' I_t IS appropri-
shown. The labels at the fluid lines refer to the form of the chemicaPt€ 1O zeXpre.S$1 as a series in B Sl_U_CP_QI/Cl
potential difference used in the GDI integration. The dashed line ist O(1/c1), with the coefficienty, to be determined by the

the description of the solid phase according to the cell model. ~ analysis. The integral in E@4) is easily evaluated and yields
for the cell-model free energy per partigle= —Inv
The approach to monodisperse close packing is interest-

ing, especially in light of the finding that such a system can 3Vp
be precipitated from a fluid phase. The narrowness of the y=—In 3 +4Inc,—C10¢p— Q5. (5)
composition distribution permits us to treat the imposed 4N o

chemical potential distribution as a linear fofonly c; non-
zero in Eq.(1)]. The need to apply a cubic distribution to
reach this limit has more to do with the behavior of the
coexisting fluid than with the solid. Accordingly, we con-
sider a simple cell-model description of the limit of close
packing for the linear case.

Cottin and Monson have made a lot of progress recentl)}/cl’
in applying canonical-ensemble cell models to understand
the freezing behavior of hard-sphere mixtufés]. We in-
stead work in the semigrand ensemble. In addition, we ex-
ploit some simplifications that accompany the approach to
close packing to develop analytical relations for the thermo- 3
dynamic properties. In this regard this treatment for mixtures mz=0qs/cy, ®
is an extension of the methods used to model the approach of )
monodisperse hard spheres to their close-packing [ig ~ With M as thekth moment about the meax . The dimen-
We see the semigrand ensemble as providing the only viabgionless cell-model coefficienty, are recorded in Table I.
framework to conduct this high-density analysis for polydis- "€ equation of state is obtained most easiyd with no
perse mixtures. furthe.r approxun_atmhwa the scaling rela_t|on, Eq3). The

The (constant volume semigrand-canonical ensemble chemical potentiaju(o) of a sphere of diameter is then
[9,10] partition functionY for an uncorrelated cell model is obtained from its relation to the semigrand free energy and
written as the product of cell partition functions=1N. The  the pressure:
single-cell partition functionv integrates over all positions
anogll diamet%rs of a hard sphere vg\]/ithin the unit CSH. The po- u(o)=y+Plp+Au(o). ©)
sitions are constrained by the requirement of no overlap with . . .
spheres in neighboring gells, wr?ich are fixed at their Igttice\/\./e performed semigrand-ensemble MC S|mglat|ons of a
positions and which are of fixed diametgr, the diametes; single phas?ls of negrly close-épackeg polydlsperse hard
will be determined self-consistently in the treatment. For aspheres forp ¢, ranging from 10 to 10, exar_nmmg_the
given diameter of the central sphere, the integral over posig_ystem_—sme dependence to_ extrgpol_ate_ o infinite size. The
tions is well approximated by the volume of an appropriateSImUIatlonS il th? SC"""F‘Q W"fhl indicated by the. cell
dodecahedrorfassuming the solid forms an fcc latticén model. I—l|owever,. the S|mqlat|ons find that the coefficients pf
which case the unit-cell partition function is the scaling relations are incorrect for the second an'd'th|rd

moments. Results are presented in Table I. Not surprisingly,
Vo [ max 3 the cell-model second moment is too small because the treat-
v= f e®1”
A30'0 0

The first moment of the composition distribution is given by
the derivativedy/dc,; setting this equal t®; produces the
resultq;=4. Within the uncorrelated cell model approxima-
tion the higher moments can be obtained by further differen-
tiation with respect tac;. In summary, to lowest order in

S$1=0¢p—01/Cq, (6)

m2=q2/C§, (7)

do, (4) ment ignores fluctuations in the diameters of the neighbors of

1
Ocp™ 5(o+sy)
the central sphere, fluctuations which can only cause the dis-

2
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tribution of diameters to become wider than the uncorrelatedhard-sphere fluid phase. Given a fluid phase of known com-
prediction. We made several attempts to develop correlategosition at a pressure, one could proceed as follows:
models but did not find satisfactory improvement. MC simu- (i) Guess a valus, of the average diameter of the solid
lations of cell models of varying degree of approximation precipitate.(ii) Using the model of the fluid phase, compute
indicate that many-neighbor correlations are needed to yielthe local slopec, of the fluid-phase chemical-potential dis-
any improvement in the higher moments. tribution at the diametes; . (iii) Within the approximation
Elimination of c; between the moments in Eq&)—(8) of the cell model a solid phase corresponding to these values
permits comparison with the MC density-polydispersity of P, c;, ands; can exist only if a density can be found
phase diagram. The corresponding cell-model curve is presatisfying both Eqs(3) and (6). This requires(taking q;
sented as a dashed line in Fig. 1. This curve was computee 4)
according to thec;-scaling relations prescribed by the cell
model, but with corrected values of the coefficients recorded 3 J2 (c181)°
in Table I. We must emphasize that the linear chemical po- PSF? m
tential approach, and the cell model based upon it, applies ™1
only to a precipitating solid; it is not valid as a general equa-

. f f i lid f ; (iv) If Eq. (10) is obeyed for soms;, then the solid phase
tion of state for a polydisperse solid away from coexistencey precipitate from the fluid if the candidate fraction has a

The complete solid-fluid coexistence diagram for polydis-l wer chemical potential in the solid. This outcome can be

perse hard spheres exhibits two regions in which the soli ; ; ;
phase is nearly monodisperse. The first is the region that quSted by comparing the chemical potentiab-ats, from the

d 10 initiate this studv i . H th flid model to the cell model value of E¢O).
used 1o nitiate this study in our prewous.wd.ﬂﬂ. ere, e one might then find that a solid is precipitated continu-
solid is monodisperse because the fluid is too; i.e., it is

. ) X ously as the pressure is increased, forming crystalline do-
monodisperse because all spheres in the complete fde—so%ﬂ‘ y P g cry

(10

. . X ains of different average diameter. Alternatively the solid
system are of nearly the same diameter. This case is mark g y

Do e ight form a single quasicrystalline phase with sphere diam-
by an gqually harrow activity distribution. The other nearIyT eters that vary continuously with position. A related issue is
monodisperse coexisting solid does not have a narrow activp o tormation of quasicompounds—crystals that exhibit

ity distribution. Instead the distribution increases EXPONeny, o range ordering of the average sphere diameters. Two-
tially over the (narrow range of diameters. Consequently, component hard-sphere mixtures are known to form stable
this phase can be equilibrated with a lower-density quidCompounds of the typAB, AB,, andABy; [18]. However
phz_is_e Of. af?"”?”'y large polydispersityhe details .Of the these crystals arise only for spheres differing greatly in size
activity distribution beyond the narrow range of dlameters(Size ratios on the order of 0:6in the present work the

are c;;‘ no cops_stgugr;ce to the sollig_pha'ﬁlm.lsh, sgch ﬁsoli;jl . pbserved upper bound of6% polydispersity corresponds
can be precipiated from any polydisperse hard-spnere TG, 5 smallest-sphere/largest-sphere size ratio barely below

the principal limitation is whether the fluid can be suffi- 0.9. Moreover, the systems simulated in this work had the

ciently compressed without forming a glass. Nevertheles§reedom to adopt bimodal distributions and form com-

our previous con_clu3|o[18] regar_dmg the terminal pply@s— ounds, but this behavior was not observed. Nevertheless, it
persity of the solid phase remains: a stable, substitutionall

disordered crystalline phase of polydispersity exceedinqhe overall freezing behavior of polydisperse hard spheres,

5.7% of the average sphere diameter cannot be formed frorgnd may be relevant to the freezing of highly polydisperse

a fluid phase. _
One can apply a fluid-phase modelg., the MCSL equa- fluid phases.

tion of statg 14]) in conjunction with the cell model outlined This work was supported by the U.S. Department of En-
above to predict the existence and nature of a substitutionallgrgy, Office of Basic Energy Sciences under Contract No.
disordered solid precipitate for an arbitrary polydisperseDE-FG02-96ER14677.

[1] B. J. Alder and T. E. Wainwright, J. Chem. Phy&, 1208 Jevesque, and J. Zinn-JustifNorth-Holland, Amsterdam,
(1957; W. W. Wood and J. D. Jacobsotbid. 27, 1207 1991).
(1957. [6] P. Pusey, J. Phy¢Parig 48, 709(1987; J. L. Barrat and J.-P.
[2] W. G. Hoover and F. H. Ree, J. Chem. Ph4&.3609(1968; Hansenjbid. 46, 1547(1986; R. McRae and A. D. J. Haymet,
D. Frenkel and A. J. C. Laddbid. 81, 3188(1984. J. Chem. Phys38, 1114(1988.
[3] W. B. Russel, D. A. Saville, and W. R. Schowaltélloidal [7] E. Dickinson, Faraday Discuss. Chem. S8%.127(1978; E.
Dispersions(Cambridge University Press, Cambridge, 1989 Dickinson, R. Parker, and M. Lal, Chem. Phys. L&, 578
[4] S. Hachisu and Y. Kobayashi, J. Colloid Interface 86.470 (1981); E. Dickinson and R. Parker, J. PhyBErance Lett. 46,
(1974; C. G. de Kruif, J. W. Jansen, and A. Vrij, @omplex L229 (1985.
and Supramolecular Fluidsedited by S. A. Safran and N. A.  [8] P. Bolhuis and D. A. Kofke, Phys. Rev. &, 634 (1996.
Clark (Wiley Interscience, New York, 1987 [9] R. B. Griffiths and J. C. Wheeler, Phys. Rev2A1047(1970;

[5] P. Pusey, inLes Houches, sesion LI, Liquids, Freezing and J. G. Briano and E. D. Glandt, J. Chem. P8@.3336(1984);
Glass Transitions Nato ASI, edited by J.P. Hansen, D. D. A. Kofke and E. D. Glandtibid. 87, 4881(1987).



622 DAVID A. KOFKE AND PETER G. BOLHUIS PRE 59

[10] D. A. Kofke, Adv. Chem. Phys105 405(1998. [16] B.J. Alder, W.G. Hoover, and D.A. Young, J. Chem. Ph4,.

[11] D. A. Kofke, J. Chem. Phy€8, 4149(1993. 3688(1968.

[12] D. A. McQuarrie,Statistical Mechanic¢Harper & Row, New  [17] The unit diametero, could be avoided by working with a
York, 1976. dimensionless species-identifying parameter rather than using

[13] D. A. Kofke and E. D. Glandt, J. Chem. Phy, 439(1989. the hard-sphere diameter directly. Such an approach compli-

[14] G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. cates the notation and presentation to a degree that we prefer to
Leland, Jr., J. Chem. Phy54, 1523(1971). avoid here.

[15] X. Cottin and P. A. Monson, J. Chem. Phy€2, 3354(1995; [18] M. D. Eldridge, P. A. Madden, and D. Frenkel, Natyten-
99, 8914(1993. don) 365, 35(1993.



