
PHYSICAL REVIEW E JANUARY 1999VOLUME 59, NUMBER 1
Freezing of polydisperse hard spheres
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Freezing of polydisperse hard spheres is studied by Monte Carlo simulation and the results are interpreted
with a cell model of the solid. The results supplement an earlier study of freezing of nearly monodisperse hard
spheres and, within the assumption of a substitutionally disordered solid, a complete description of the freezing
behavior is obtained. The density and polydispersity of the precipitate are characterized by a single curve,
regardless of the composition of the fluid from which it is formed. Fractionation enables a fluid of arbitrary
polydispersity to precipitate a solid of small polydispersity, dispeling the long-held notion of a fluid-phase
‘‘critical’’ polydispersity, beyond which it cannot form a solid. Nevertheless, a primary conclusion from the
previous study is confirmed: a solid crystalline phase of polydispersity exceeding 5.7% of the average sphere
diameter cannot be precipitated from a fluid phase.@S1063-651X~98!04312-8#

PACS number~s!: 64.70.Dv, 61.20.Ja, 64.60.Cn, 82.70.Dd
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The freezing transition of a system of pure hard sphe
was demonstrated by some of the earliest molecular sim
tions @1#, and the precise location of the transition was la
determined by free-energy calculations@2#. The hard-sphere
model provides a crude but reasonable description of
behavior of some colloidal systems@3#, and an ordering tran
sition that has been observed in uncharged monodisp
colloids is consistent with the hard-sphere behavior@4,5#.
Real colloidal systems often comprise spheres of vary
size, and the effect of this polydispersity on the order
behavior is not well understood. The influence of polydisp
sity has been examined with theory@6#, molecular simulation
@7,8#, and experiment@5#. A general conclusion from all o
these studies is the existence of an upper limit on size p
dispersity, a ‘‘terminal polydispersity’’ above which no cry
tallization can occur. If the polydispersity is defined as t
standard deviation of the size distribution divided by t
mean, then the various studies indicate that the term
polydispersity is in the range of 5–15 %. Almost all studi
based in theory or molecular simulation invoke some
sumption regarding the distribution of particle diameters
tween the two phases, typically taking them to be identic
In principle, this approach is incorrect, as phase equilibria
mixtures generally involve some fractionation, with comp
nents of the mixture distributing themselves unevenly
tween the phases. This ‘‘constrained eutectic’’ approxim
tion is reasonable only for small polydispersity.

We recently reported@8# a molecular simulation study o
the freezing transition of polydisperse hard spheres. Th
simulations were conducted in a semigrand ensemble@9,10#
and employed the Gibbs-Duhem integration~GDI! technique
@10,11# to follow the coexistence behavior as a function
size polydispersity. The study provided an essentially ex
description of the freezing transition, and it found that fra
tionation begins to show at a polydispersity of approximat
3%. The study also indicated the existence of a term
polydispersity which, due to fractionation, is different in th
solid and fluid phases: 5.7 and 11.8 %, respectively.
PRE 591063-651X/99/59~1!/618~5!/$15.00
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It is important to understand how the terminus arises
the simulation study. In the semigrand ensemble an indep
dent variable is the distribution of chemical potential diffe
encesDm(s), or activity ratiosa(s)5exp„Dm(s)…, where
s is the hard-sphere diameter~to simplify notation we take
unit temperature kT!. This distribution is imposed on both
phases, thereby ensuring equality of all species chemical
tentials as long as the chemical potential of an arbitrary
erence species is made equal in the two phases. This req
ment is met by the GDI procedure via selection of
appropriate value of the coexistence pressure~also imposed
on both phases!. The imposed activity distribution is Gauss
ian with variancen, which thereby becomes the variab
used to control the polydispersity. The GDI method trac
the locus of states in the (P,n) plane for which the solid and
fluid are in equilibrium. The initial condition for the integra
tion is the monodisperse limit,n→0, at which the coexist-
ence pressure is known. Integration proceeds in a directio
increasingn. As the activity distribution becomes less sha
the mixtures become increasingly nonideal, and the com
sition distribution migrates away from the imposed activ
distribution. The shift in both phases is toward smaller dia
eters.

Eventually the integration path bends back, and the co
istence pressure grows without bound as the parametn
returns to zero. The resulting distribution of diameters
such that most spheres are vanishingly small. Neverthe
physically relevant results can be recovered by scaling
quantities by a mean diameter. In particular upon rescalin
is found that the polydispersity continues to increase~despite
the decrease inn) and the pressure remains finite. As th
regime takes hold, the interpretation ofn as a measure o
polydispersity becomes inappropriate. The diameter distri
tion is highly skewed away from the imposed Gaussian
tivity, and is so narrow that the chemical potential distrib
tion is essentially linear across it. Here,n can be interpreted
only as~the reciprocal of! the slope of this linear distribution
The system is analogous to one in which Hookean spri
618 ©1999 The American Physical Society
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PRE 59 619FREEZING OF POLYDISPERSE HARD SPHERES
attempt to push the spheres to larger diameters, while
external pressure constrains them to finite values. The si
state parameter for this limiting system is the ratio of t
pressure to this ‘‘spring constant.’’ Only one value of th
ratio is consistent with solid-fluid coexistence~just as only
one pressure is possible for coexisting solid and fluid mo
disperse hard spheres!; hence when the limit is reached n
further variation is possible and the coexistence line ter
nates.

In this paper, we extend this integration procedure fr
the previously identified terminus by imposing a chemic
potential distribution containing quadratic or cubic terms
the sphere diameter. Interestingly, this process finds tha
saturated solid phase becomes increasingly monodisp
and close-packed while the saturated fluid adopts incr
ingly large polydispersity, i.e., fractionation increases. T
narrowness of the solid-phase diameter distribution perm
its chemical potentials to be well characterized by a lin
form, so the higher-order terms in the chemical-potential d
tribution have their greatest effect on the fluid phase on
This outcome imbues the study with a generality we disc
below.

Before continuing, it is worth remembering the notion
equivalence of ensembles@12#, which permits us to study
polydisperse hard spheres as though the diameters were
tuating under the influence of ‘‘internal springs’’ and st
draw conclusions about the coexistence behavior of real
loidal spheres each of fixed diameter. The device of fluc
ating the diameters facilitates the phase-coexistence calc
tion, and should be viewed as the sampling of differe
physical regions of the solid and fluid; for this analysis to
valid it is by no means necessary that the spheres in the
system actually fluctuate in diameter.

We conduct our Monte Carlo~MC! simulations in the
isobaric semigrand ensemble, for which the distribution
chemical potential differencesDm is an independent~func-
tional! parameter. We are interested in including terms up
cubic in the sphere diameters

Dm~s!5c1s1c2s21c3s3. ~1!

The identity of the ‘‘reference’’ diameter, against which th
difference is formed, is not important and for convenien
we take it to be zero. Thec1 terminus identified in@8# cor-
responds toc151 with c25c350 ~herec1 sets the length
scale!. To depart from this point we apply the GDI metho
@10,11# to follow the coexistence line asc2 or c3 is increased
from zero. The governing Clapeyron-like equation is

dP

dck
5

Dsk

Dv
, ~2!

wheresk is thekth moment~about the origin! of the diameter
distribution,v is the volume per molecule, and theD indi-
cates a difference between the two coexisting phases. B
quantities are measured by the MC simulation, and
predictor-corrector procedure is applied to integrate this
ferential equation, as described elsewhere@8,10,11#.

The volume integral in the isobaric ensemble average
be evaluated analytically, so MC sampling of the volume
not necessary@8#. A closely connected result is an exa
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scaling formula that relates the pressure to the moment
the composition distribution@13#. For theDm distribution of
Eq. ~1!, this relation is

3~P/r21!511c1s112c2s213c3s3 , ~3!

wherer51/v is the number density. In the semigrand e
semble the moments are not knowna priori so this formula
is not a self-contained equation of state, but it is useful no
theless.

Several integration series were performed, differing in
choice of integration path and the method for characteriz
the fluid phase. In some series simulation was used to c
acterize both phases. In other series we applied the h
sphere mixture equation of Mansooriet al. @14# ~MCSL! in
lieu of simulation of the fluid. We used the fluid-phase equ
tion of state because we were concerned about the abilit
the fluid-phase simulations to converge at high pressure
course, the validity of the equation of state may be qu
tioned in this regime too. Simulations of the solid and flu
phases were performed with system sizes of 256 or 864
ticles in each phase. In each simulation 20 000 simulat
cycles were performed, where one simulation cycle co
prises one translation attempt and one diameter-change
per particle~on average; trial particles were always selec
at random!.

Two series were performed from thec1 terminus. In one
the c2 coefficient was increased from zero withc1 fixed at
unity ~thereby setting the length scale!; in another series the
c3 coefficient was instead increased. Thec2 series terminated
naturally ~with c2 /c1

2→`) much as the original series@8#
did. At this new terminus a second ‘‘c3 series’’ was initiated,
using the MCSL equation for the fluid phase. Bothc3 series
were extended to the point where the approach broke do
either because the MCSL equation of state had no solu
for the givenDm distribution, or because the simulation
were extremely sluggish at converging~owing to the high
density of the simulated fluid!.

In Fig. 1 results are presented in the volume fractio
polydispersity plane. The originalc1 terminus and the new
c2 terminus are indicated. Several tie lines joining coexist
fluid and solid phases are presented as well. Two features
notable. First, the fluid-phase curves differ with the choice
integration path~i.e., whetherc2 is integrated before initiat-
ing the c3 integration!. This, of course, is not a surprisin
outcome. The coexistence density and polydispersity sho
be expected to depend on details of the imposed chem
potential distribution. Therefore, it is surprising that a cor
sponding difference is not observed in the coexisting so
All solid-phase coexistence curves are practically indist
guishable. The second feature worth noting is the behavio
this ‘‘universal’’ solid-phase curve. In all cases the integr
tion proceeds to a solid that becomes increasingly mono
perse and increasingly dense, approaching a pure, clo
packed solid phase. This limiting solid is in equilibrium wit
a highly polydisperse fluid. It must be emphasized that
fore this limit is reached it is likely that the fluid-phase da
becomes compromised, perhaps by the onset of a glass
sition, and almost certainly by limits of the convergence r
of the simulation; thus at some point the fluid-phase d
must be viewed only qualitatively.
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The approach to monodisperse close packing is inter
ing, especially in light of the finding that such a system c
be precipitated from a fluid phase. The narrowness of
composition distribution permits us to treat the impos
chemical potential distribution as a linear form@only c1 non-
zero in Eq.~1!#. The need to apply a cubic distribution t
reach this limit has more to do with the behavior of t
coexisting fluid than with the solid. Accordingly, we con
sider a simple cell-model description of the limit of clo
packing for the linear case.

Cottin and Monson have made a lot of progress rece
in applying canonical-ensemble cell models to underst
the freezing behavior of hard-sphere mixtures@15#. We in-
stead work in the semigrand ensemble. In addition, we
ploit some simplifications that accompany the approach
close packing to develop analytical relations for the therm
dynamic properties. In this regard this treatment for mixtu
is an extension of the methods used to model the approac
monodisperse hard spheres to their close-packing limit@16#.
We see the semigrand ensemble as providing the only vi
framework to conduct this high-density analysis for polyd
perse mixtures.

The ~constant volume! semigrand-canonical ensemb
@9,10# partition functionY for an uncorrelated cell model i
written as the product of cell partition functions:Y5yN. The
single-cell partition functiony integrates over all position
and diameters of a hard sphere within the unit cell. The
sitions are constrained by the requirement of no overlap w
spheres in neighboring cells, which are fixed at their latt
positions and which are of fixed diameters1 ; the diameters1
will be determined self-consistently in the treatment. Fo
given diameter of the central sphere, the integral over p
tions is well approximated by the volume of an appropri
dodecahedron~assuming the solid forms an fcc lattice!, in
which case the unit-cell partition function is

y5
VD

L3s0
E

0

smax
ec1sFscp2

1

2
~s1s1!G3

ds, ~4!

FIG. 1. Coexisting fluid and solid phases in the volume fract
(rs3)—polydispersity plane. Tie lines connect a few coexisti
phases. Both thec1 ~open circles! and thec2 terminus~squares! are
shown. The labels at the fluid lines refer to the form of the chem
potential difference used in the GDI integration. The dashed lin
the description of the solid phase according to the cell model.
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wherescp5(A2/r)1/3 is the nearest-neighbor separation f
a lattice of densityr, and smax52scp2s1 is the maximum
diameter without overlap; alsoVD54A2 is the volume of a
rhombic dodecahedron for which an inscribed sphere
unit radius;s0 is a unit diameter that serves only to make t
partition function dimensionless@17#, andL is the thermal
wavelength.

In the close-packing limit the slopec1 becomes infinite,
and the average diameters1 approachesscp . It is appropri-
ate to expresss1 as a series in 1/c1 : s15scp2q1 /c1

1O(1/c1
2), with the coefficientq1 to be determined by the

analysis. The integral in Eq.~4! is easily evaluated and yield
for the cell-model free energy per particley52 lny

y52 ln
3VD

4L3s0

14lnc12c1scp2q1 . ~5!

The first moment of the composition distribution is given
the derivative]y/]c1 ; setting this equal tos1 produces the
resultq154. Within the uncorrelated cell model approxim
tion the higher moments can be obtained by further differ
tiation with respect toc1 . In summary, to lowest order in
1/c1 ,

s15scp2q1 /c1 , ~6!

m25q2 /c1
2 , ~7!

m35q3 /c1
3 , ~8!

with mk as thekth moment about the means1 . The dimen-
sionless cell-model coefficientsqk are recorded in Table I
The equation of state is obtained most easily~and with no
further approximation! via the scaling relation, Eq.~3!. The
chemical potentialm(s) of a sphere of diameters is then
obtained from its relation to the semigrand free energy a
the pressure:

m~s!5y1P/r1Dm~s!. ~9!

We performed semigrand-ensemble MC simulations o
single phase of nearly close-packed polydisperse h
spheres forr1/3c1 ranging from 104 to 107, examining the
system-size dependence to extrapolate to infinite size.
simulations confirm the scaling withc1 indicated by the cell
model. However, the simulations find that the coefficients
the scaling relations are incorrect for the second and th
moments. Results are presented in Table I. Not surprisin
the cell-model second moment is too small because the tr
ment ignores fluctuations in the diameters of the neighbor
the central sphere, fluctuations which can only cause the

l
is

TABLE I. Coefficients describing the composition moments,
determined by the cell model and by MC simulation~extrapolated
to infinite system size!. Numbers in parentheses indicate the con
dence limits of the last digit of the value.

q1 q2 q3

Cell model 4 4 28
Simulation 4.0001~2! 6.547~2! 27.80(4)
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PRE 59 621FREEZING OF POLYDISPERSE HARD SPHERES
tribution of diameters to become wider than the uncorrela
prediction. We made several attempts to develop correla
models but did not find satisfactory improvement. MC sim
lations of cell models of varying degree of approximati
indicate that many-neighbor correlations are needed to y
any improvement in the higher moments.

Elimination of c1 between the moments in Eqs.~6!–~8!
permits comparison with the MC density-polydispers
phase diagram. The corresponding cell-model curve is
sented as a dashed line in Fig. 1. This curve was comp
according to thec1-scaling relations prescribed by the ce
model, but with corrected values of the coefficients record
in Table I. We must emphasize that the linear chemical
tential approach, and the cell model based upon it, app
only to a precipitating solid; it is not valid as a general equ
tion of state for a polydisperse solid away from coexisten

The complete solid-fluid coexistence diagram for polyd
perse hard spheres exhibits two regions in which the s
phase is nearly monodisperse. The first is the region that
used to initiate this study in our previous work@8#. Here, the
solid is monodisperse because the fluid is too; i.e., it
monodisperse because all spheres in the complete fluid-
system are of nearly the same diameter. This case is ma
by an equally narrow activity distribution. The other near
monodisperse coexisting solid does not have a narrow a
ity distribution. Instead the distribution increases expon
tially over the ~narrow! range of diameters. Consequent
this phase can be equilibrated with a lower-density fl
phase of arbitrarily large polydispersity.The details of the
activity distribution beyond the narrow range of diamete
are of no consequence to the solid phase.Thus, such a solid
can be precipitated from any polydisperse hard-sphere fl
the principal limitation is whether the fluid can be suf
ciently compressed without forming a glass. Neverthel
our previous conclusion@8# regarding the terminal polydis
persity of the solid phase remains: a stable, substitution
disordered crystalline phase of polydispersity exceed
5.7% of the average sphere diameter cannot be formed f
a fluid phase.

One can apply a fluid-phase model~e.g., the MCSL equa-
tion of state@14#! in conjunction with the cell model outlined
above to predict the existence and nature of a substitution
disordered solid precipitate for an arbitrary polydispe
.
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hard-sphere fluid phase. Given a fluid phase of known co
position at a pressureP, one could proceed as follows:

~i! Guess a values1 of the average diameter of the sol
precipitate.~ii ! Using the model of the fluid phase, compu
the local slopec1 of the fluid-phase chemical-potential dis
tribution at the diameters1 . ~iii ! Within the approximation
of the cell model a solid phase corresponding to these va
of P, c1 , and s1 can exist only if a density can be foun
satisfying both Eqs.~3! and ~6!. This requires~taking q1
54)

Ps1
35

A2

3

~c1s1!3

~c1s114!2
. ~10!

~iv! If Eq. ~10! is obeyed for somes1 , then the solid phase
will precipitate from the fluid if the candidate fraction has
lower chemical potential in the solid. This outcome can
tested by comparing the chemical potential ats5s1 from the
fluid model to the cell model value of Eq.~9!.

One might then find that a solid is precipitated contin
ously as the pressure is increased, forming crystalline
mains of different average diameter. Alternatively the so
might form a single quasicrystalline phase with sphere dia
eters that vary continuously with position. A related issue
the formation of quasicompounds—crystals that exh
long-range ordering of the average sphere diameters. T
component hard-sphere mixtures are known to form sta
compounds of the typeAB, AB2 , andAB13 @18#. However,
these crystals arise only for spheres differing greatly in s
~size ratios on the order of 0.6!; in the present work the
observed upper bound of;6% polydispersity correspond
to a smallest-sphere/largest-sphere size ratio barely be
0.9. Moreover, the systems simulated in this work had
freedom to adopt bimodal distributions and form com
pounds, but this behavior was not observed. Nevertheles
seems likely that substitutionally ordered phases are par
the overall freezing behavior of polydisperse hard sphe
and may be relevant to the freezing of highly polydispe
fluid phases.

This work was supported by the U.S. Department of E
ergy, Office of Basic Energy Sciences under Contract N
DE-FG02-96ER14677.
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