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Abstract

We examine the performance of free-energy perturbation methods when applied to compute the chemical
potential of the Lennard–Jones model by Monte Carlo simulation. We emphasize the accuracy and precision of
various implementations of the methodology, particularly in the context of the relative effectiveness of
‘insertion’ vs. ‘deletion’ approaches. The study is limited to a single state point and system size. In accord with
recent arguments made in the context of the hard-sphere model, we find that any single- or multi-stage approach
that incorporates a ‘deletion’ component shows greatly diminished accuracy and precision when compared to its
‘insertion’ counterpart. We also confirm our earlier conjecture that the entropy rather than the free energy is the
important quantity to examine when formulating optimal multistage free-energy perturbation schemes. q 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

The chemical potential is a key quantity in the calculation of phase and chemical equilibria.
Ž .Therefore its evaluation explicitly or implicitly is a high priority in simulations aiming to study these

phenomena. Often this measurement is very difficult to perform with any precision. The origin of the
difficulty is typically explained by pointing out that molecular configurations that contribute most to
the measurement are not well sampled during a conventional simulation. This explanation tells only
half of the story. It must also be noted that the poor sampling can come about from one of two
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w xfundamentally different mechanisms, one entropic and the other energetic 1 . The efficient and
successful application of an algorithm for computing the chemical potential requires an appreciation

Ž .of these effects. A lack of understanding here can and has lead to a misapplication of methodology
and, more seriously, a misinterpretation of results. The purpose of this paper is to demonstrate these
points through application of staged free-energy perturbation methods to the calculation of the
chemical potential of the Lennard–Jones model system.
Available methods for computing the chemical potential by molecular simulation are of four types.

In all cases the goal is to evaluate the free-energy difference between systems differing in the
presence of a single molecule. This difference is related in a trivial way to the chemical potential. The
Ž . w xoverlapping categories are as follows 1 .
Free-energy perturbation. This method permits computation of the free-energy difference between

two systems while simulating only one of them. It is the focus of this paper.
w x Ž .Expanded ensembles 2–5 . In this approach, the system wanders with bias among different

thermodynamic states, or ensembles, and the frequency with which the states are visited permits
evaluation of the free-energy differences.
Thermodynamic integration. In simplest form this involves the straightforward numerical integra-

tion of the fundamental thermodynamic equation of a chosen ensemble. The most useful extensions
formulate non-traditional thermodynamic integration pathways.

w xHistogramrdistribution methods 6–9 . These approaches gather the greatest possible amount of
Ž .information from a or each simulation, perhaps add some understanding from theory, and thereby

w xyield a value for the chemical potential. We have identified 1 these methods as the most likely route
to advance the chemical-potential measurement methodology, but we do not consider them further in
this report.

2. Free-energy perturbation methods

2.1. Single-stage methods

The working equation for free-energy perturbation connects the Helmholtz free energies A for two
Ž . w xsystems subscript 0 and 1, respectively that differ in some specific way 10

² :exp yb A yA s exp yb F yF 1Ž . Ž . Ž .1 0 1 0 0

where bs1rkT with T the absolute temperature and k Boltzmann’s constant; F is the Hamiltonian.
The angle-brackets describe a canonical-ensemble average, and the ‘0’ subscript on it indicates that

Ž .configurations in the ensemble are weighted according to the potential F . Obviously, Eq. 1 can be0
written with the ‘0’ and ‘1’ subscripts interchanged, so in principle either system may serve as the
‘reference’. In many instances F is defined as the intermolecular potential for a system of N or
Ny1 particles, U or U , respectively.N Ny 1

Ž .Taking the ‘0’ system in Eq. 1 as having Ny1 particles, and the ‘1’ system as having N,
w xA yA is the chemical potential and we obtain Widom’s method 11,121 0

² :exp ybm s e 2Ž .r t Ny1
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Ž .where e sexp ybu is the Boltzmann factor of the energy u 'U yU of the Nth ‘test’t t t N Ny1
particle. The method works well if sufficiently many configurations find no test-particle overlap, i.e.,
if configurations important to the N-particle system are well sampled. Alternatively, if we take the ‘0’
system having N particles and the ‘1’ system comprising Ny1, we derive the ‘test-particle removal’

w x Ž .formula 7 and references therein
² :exp qbm s 1re 3Ž .r t N

Ž .The test particle may be any of the N interacting spheres. In practice a simulation based on this
formula is completely unreliable, as the average contains an enormous contribution from configura-
tions that are never sampled. The outcome is a consistent, practically systematic, underestimation of
the chemical potential.
Superficially, test-particle insertion and removal are symmetric operations, so it is perhaps

surprising to see that measurement methods based on each have drastically different levels of
w xreliability. In the context of Widom insertionrdeletion this outcome is well known 7,13–17 and well

Ž .if not widely understood. A diagram is helpful in conveying the nature of the asymmetry. Fig. 1
presents a highly schematic depiction of phase space—the 3N-dimensional space of particle configu-
rations. The dark oval represents all configurations that are important to the system of Ny1
particles, and the white square within it represents all configurations important also to the N-particle
system. Here ‘important’ means those configurations that contribute significantly to the partition
function. The significant feature is that the N-important region lies within the Ny1 important region,

Ž y7 .and may represent a very small fraction of it say of the order of 10 or smaller . This situation is
rigorously true for hard potentials, and it is likely to be a highly accurate depiction of systems of soft

Ž .particles and even systems for which attractive forces are important say, a fluid near its triple point ,
particularly if the intermolecular potential is isotropic.

Ž .In Widom’s insertion method, the system samples the Ny1 -important region, and finds
Ž . Ž .contributions to the ensemble average of Eq. 2 in those sometimes rare instances in which the

N-important region is encountered by chance. Here the barrier to sampling is entropic. The
probability of sampling the significant region is in proportion to its fractional representation, e.g., it is
a probability of order 10y7. In contrast, the particle deletion method samples the N-important region

Fig. 1. Schematic depiction of phase space, and the relation between regions important to systems of Ny1 and N particles,
respectively.
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Ž . Ž .while the greatest contribution to the ensemble average of Eq. 3 lies in those Ny1 -important
configurations outside of this region. The significant configurations are not sampled because they are
of a prohibitively high energy, i.e., the barrier to sampling is energetic. The probability of sampling
the significant region is in proportion to the Boltzmann factor, which may be an extremely tiny
probability, e.g., 10y50 or smaller. The contribution to the average is inversely proportional to the
likelihood of sampling, so missing these low-probability configurations has a disastrous consequence
for the accuracy of the measurement. The problem is especially insidious because the error statistics
for the measurement do not betray the trouble, which is to say the method returns a result that is
precisely wrong.

2.2. Multi-stage methods

Multi-stage methods are based on the idea of constructing the free-energy difference of interest
Ž . Ž . Ž .A yA via A yA q A yA , where A is the free energy for an intermediateN Ny1 N W W Ny 1 W
system that is formulated to facilitate the chemical-potential calculation. This intermediate is defined
by the potential F , which in turn is defined via a weight function W: F sU y ln W. FourW W Ny1
approaches may be constructed depending on how one chooses to compute the component free energy

Ž . Ž . Ž .differences A yA and A yA using Eq. 1 . These are summarized in Table 1. TheN W W Ny 1
working formulas there specify the ensemble averages needed in the systems of N particles, Ny1
particles, or the intermediate W, as indicated.

w xUmbrella sampling is perhaps the best known of the methods 18,19 . It has the advantage of giving
the chemical potential by a single simulation in which two averages are recorded while sampling the

w xW system. Bennett’s method 6 is in some sense the opposite: it requires simulations of both the
Ny1 and N-particle systems. Because the weighting function W has no bearing on the sampling of
configurations, this method is amenable to analytic optimization. Bennett completed this, and his
name is usually associated with the staging approach together with the optimized prescription for W.
Staged insertion and staged deletion are less widely considered as techniques for measuring the
chemical potential, although they are routinely practiced in the computational chemistry community
w x20 .
The considerations of entropic vs. energetic barriers to sampling apply—albeit to a lesser

degree—when free-energy perturbation methods are extended to these multistage forms. In particular
the multistage methods suffer to the extent that they contain a ‘deletion’ staging component, defined

Table 1
Four approaches to splicing single-stage free-energy perturbations to construct multistage forms

w xStaging approach Name Formula expybm sr
y1Ž . ² : ² :Ny1 §W™N Umbrella sampling e rW 1rWW Wt y1Ž . ² : ² :Ny1 ™W§N Bennett’s method Wre WN Ny1t

Ž . ² : ² :Ny1 ™W™N Staged insertion e rW WW Ny1t y1 y1Ž . ² : ² :Ny1 §W§N Staged deletion Wre 1rWN Wt

Ž Ž ..The arrows point from the system in which the sampling is being performed the ‘0’ system of Eq. 1 , to the perturbation
Ž .system the ‘1’ system .
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such that the barrier to good sampling is energetic in origin. By tinkering with the weighting
function, umbrella sampling and Bennett’s method can overcome this handicap to some degree, but
for umbrella sampling this involves a delicate balancing, while with Bennett’s optimization the
method reverts to something that is little different than a single-stage insertion. The only one of the
four approaches that has no ‘deletion’ component is staged insertion, and indeed our study of these

w xmethods in the context of the hard-sphere model found this approach to be highly effective 1 .

3. Method

3.1. Definition of intermediate stage

We consider two-stage free-energy perturbation methods in which the intermediate stage has the
Nth ‘test’ particle interacting with the remaining Ny1 particles as a simple hard sphere of diameter
a . Thus Ws0 if the center of the test particle lies within a distance a of another particle center, and
Ws1 otherwise. This choice of an intermediate stage immediately precludes application of the
umbrella-sampling and the staged-deletion methods of Table 1, because both of these methods will
always yield the value zero for the residual free energy difference A yA . This particularW Ny1

w xselection of W was recently advocated by Parsonage 21 in a Bennett’s-form staging scheme, and it
w x Ž .is very similar to one proposed earlier by Han et al. 16 again in a Bennett’s-form context .

3.2. Description of simulations

Ž . Ž .We conducted canonical-ensemble Monte Carlo MC simulations of 107 Lennard–Jones LJ
Ž . 3particles and one hard sphere HS at a density rs s0.9 and temperature kTr´s1.2. The LJ

potential was truncated at a separation of 2.5s and no long-range correction was applied. Each
simulation sampled 10,000 cycles, where one cycle is defined as one attempted MC trial per particle.
Among the trials were moves that attempted to swap the HS with a LJ particle, and attempts to
re-insert the HS at a random position. At the end of each cycle the energy change associated with
transforming each LJ particle individually into a HS was measured and kept as the running average of
² :Wre ; the energy change associated with the transformation of the HS to a LJ particle wasNt

² :measured and kept as the running average of e rW . Also at the end of each cycle one WidomWt
² : ² : Žinsertion was performed to measure both W and e respectively, HS and LJ insertionNy1 Ny1t

.averages . Several values of the HS diameter a were examined between the values 0.9 and 0.5. For
each value of a , 50 completely independent 10,000-cycle simulations were conducted, each starting
from its own, independently equilibrated initial configuration.
It is clear that for the purpose of economizing the calculations we have taken some liberty in

² : ² : ² :measuring the averages Wre , W , and e . Strictly, the system being simulated is theN Ny1 Ny1t t
² :intermediate W system, so only averages of the form . . . are obtainable. The error incurred withW

this approximation is not likely to be much worse than other finite-size effects that are known to be
significant for Ns108 at this density. Our aim in the present study is not to determine a good
infinite-system value for the chemical potential, but instead to demonstrate some basic points about
how staging calculations should be performed. We will see that the consequences of bad staging
overwhelm any inaccuracies attributable to the finite size of the simulated system.
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4. Results and discussion

The results are listed in Table 2. We report the mean of the 50 independent ensemble averages
gathered for each value of the HS diameter a , thus each value represents the average from 500,000
simulation cycles. In different instances we present the average with its associated variance from the
50 simulations, or with its standard error. These two statistics in the present case are related by the

Ž . Ž .1r2formula standard error s variancer50 . For each a , the chemical potential is reported twice:
Ž² : .once as computed via single-stage Widom insertion e , and once as computed via theNy1t

Ž² : ² : .two-stage insertion using the HS intermediate W e rW . We note that all two-stage valuesNy1 Wt
of the chemical potential are mutually consistent—considering their standard errors—and in particu-
lar there seems to be no trend with a . This gives us confidence that we have not introduced a serious

² : ² :error by taking the averages . . . and . . . during simulations of the W system. TheN Ny1
single-stage values are not consistent with the two-stage results, even considering the standard errors.
This is a point we will return to shortly.

Ž² : .In principle, the averages for the second stage HS™LJ ‘insertion’ transformation e rW andWt
Ž² : .its ‘deletion’ opposite LJ™HS Wre should be equal in magnitude and opposite in sign. It isNt

clear from Table 2 that this is not the case. The deletion value is consistently larger in magnitude,
which translates into a consistently smaller value for the chemical potential. This outcome is evident

w x w xin the results of Han et al. 16 and Parsonage 21 —both studies reported chemical potentials
consistently smaller than the straight single-stage Widom insertion values. Clearly our second-stage
deletion–insertion discrepancy must be attributed to inadequate sampling in the deletion calculation,

Ž . Ž .which not surprisingly returns a result that is virtually and incorrectly independent of a . Parsonage
noticed this breakdown in his studies, but did not consider it to be a significant problem until a is
taken somewhere less than 0.875. We see problems in evidence even for a as large as 0.9. First we
note the contrast between the variances of the insertion and deletion methods: the variance associated
with HS™LJ is two orders of magnitude smaller than that with LJ™HS. A particularly worrisome
feature of the LJ™HS calculation is demonstrated in Fig. 2. The bias in the stochastic error for the
LJ™HS calculation is striking. Only three of the 50 10,000-cycle simulations return an average that

² : Žis below the correct value; all others are above. When Wre as opposed to the logarithm of itNt

Table 2
Simulation results for the various staging elements
HS Partial insertionrdeletion averages Chemical potential, bmr
diameter, LJ™HS HS™LJ HS insertion One stage Two stages

² : ² : ² : ² : w² : ² : xa yln Wre yln e rW yln W yln e yln W e rWN W Ny1 Ny1 Ny1 Wt t t t

Ž . Ž . Ž .0.90 6.30 1.6 y6.21 0.02 8.73 0.41 2.7 2.524 9
Ž . Ž . Ž .0.88 5.77 4.8 y5.47 0.04 7.98 0.22 1.4 2.515 7
Ž . Ž . Ž .0.85 5.57 5.7 y4.38 0.07 6.96 0.10 4.9 2.583 6
Ž . Ž . Ž .0.82 5.00 20 y3.43 0.16 5.97 0.03 4.6 2.544 6
Ž . Ž . Ž .0.80 3.43 19 y2.78 0.29 5.38 0.02 1.8 2.607 7
Ž . Ž . Ž .0.70 4.70 19 y0.59 1.7 2.93 0.002 2.6 2.345 18
Ž . Ž . Ž .0.50 5.72 7.8 q1.66 5.0 0.63 0.000 3.3 2.294 30

Values inside parentheses are the variance associated with the tabled value, while subscripted values describe the standard
error in the last digit of the tabled value.
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Fig. 2. Running averages for the second stage of a two-stage free-energy perturbation employing a hard-sphere intermediate
of diameter as0.88. Thin lines represent each of fifty independent 10,000-cycle simulations, and the thick horizonal line at

Ž . Ž .5.47 describes the best estimate of the correct value for the 108-particle system. a ‘deletion’ calculation LJ™HS; b
‘insertion’ calculation HS™LJ.

.presented in the figure is averaged over all 50 runs, these three are sufficient to bring the overall
Ž .chemical potential reasonably close to the correct result, although it remains too high see Table 2 . In

sharp contrast the HS™LJ calculation yields a result that is not biased in either direction while
exhibiting a much smaller variance.
It is of interest to examine the effectiveness of the staged-insertion technique as a function of the

intermediate-stage HS diameter a . We are especially interested in how the effectiveness is associated
with the difference between the entropy change for the first stage and the entropy change for the

Ž . w xsecond stage, D DS sDS yDS . It has been advocated 22,23 that this difference beHS™ LJ HS
formed for the free energy changes rather than the entropy changes, and that optimum staging occurs

Žwhen the difference is zero. The qualitative arguments presented in the introduction and in more
w x.detail in our study using the hard-sphere model 1 have led us to speculate that the entropy, not the

free energy, is the appropriate quantity to consider to optimize the staging. The entropy differences
are easily computed from the simulation data. For an infinite system there is no energy change

² :associated with the insertion of HS, so DS rksybD A s ln W . The energy changeNy1HS HS
associated with converting the HS to a LJ particle is just twice the average energy per particle, which

w x Ž .has been reported by Parsonage 21 as UrNsy5.36. Thus DS rksb yD AqDUHS™ LJ HS™ LJ
² :s ln e rW y8.93. The entropy-change difference and the free-energy-change difference areWt

displayed in Fig. 3. In this figure we also present the reduced variance Ms 2, where Ms10,000 is
w xnumber of free-energy perturbation measurements per simulation; this group is expected 1 to be

asymptotically independent of M for M™`. Fig. 3 confirms that the entropy, and not the
free-energy, is the appropriate quantity to consider when defining an intermediate stage that
minimizes the overall error in the calculation. The minimum variance occurs at slightly larger a than
predicted by the entropy rule. This discrepancy has to do with the measurement of the energy

Žcomponent of the total free-energy change, and can be explained quantitatively to be described in
.future work .
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Ž . ŽFig. 3. Difference D DSrk in entropy change between the stages of a two-stage free-energy perturbation calculation open
. Ž .squares . Corresponding quantity for free energy is presented also filled circles . Intersection with the dashed line indicates

2 Ž .the zero. Scaled variance Ms is plotted on the right ordinate open circles . All results are computed from MC simulations
described in the text.

Before closing, we should note that the free-energy perturbation calculation in the ‘insertion’
Ždirection is not without its pitfalls. A careful examination of Fig. 3b and the single-stage insertion

.results of Table 2 finds that the fluctuations in a given 10,000-cycle simulation are misleading, and
would indicate an error estimate that is smaller than actually warranted. Nevertheless the approach is

Ž . Ž .far superior to the equivalent ‘deletion’ calculation where the same situation applies because 1 the
Ž . Ž .true error is in fact smaller; 2 there is little or no systematic bias to the error; and 3 it is possible,

by analyzing the entropy change and applying probabilistic arguments similar to those presented in
w xour hard-sphere study 1 , to know how much sampling is needed to obtain credible results. One does

not have to rely on the simulation statistics alone to apply confidence limits to the free-energy change.
A similar analysis cannot reliably be performed for the deletion analog.

5. Conclusions

We have demonstrated the substantial asymmetry of free-energy perturbation calculations in
application to a realistic molecular model. It is critical always to apply this methodology in the
‘insertion’ direction, i.e., the ensemble governing the sampling should be of greater entropy than the
perturbation ensemble. We have confirmed our earlier conjecture that the entropy difference is the
important quantity to consider when optimizing staged free-energy perturbation calculations. The
lessons learned by studying these methods in the context of hard spheres have been shown to possess
broader applicability.
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