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The isotropic—nemati@d-N) phase transition in hard ellipsoid fluids has been studied by computer
simulation, using the Gibbs—Duhem integration technique introduced by Kofke; and theoretically,
using Onsager theory and the Parsons—Lee improvement. In the simulations, the I-N coexistence
line is mapped out in thB—x plane, wherd® is the pressure andis the elongation, by numerically
integrating a Clapeyron-like first-order differential equation, using constant-pressure simulation data
for the two coexisting phases. The elongation rangexs: 20 has been studied, using independent
starting points provided by chemical potential calculations and thermodynamic integration of the
equation of state at=5,20, plus a direct Gibbs ensemble simulationxat20. The Onsager—
Parsons—Lee theory has been applied to the I-N phase transition for aspect ratios=up0@0,
affording an accurate investigation of the approach to the Onsager limit for this model. This
involved the numerical computation of the orientation-dependent second virial coefficient in a way
that avoids expansions in Legendre polynomials, so as to be accurate at high elongation. Over the
elongation range studied here, agreement between simulation and the Parsons—Lee theory is good.
© 1996 American Institute of Physid$0021-960806)50231-X]

I. INTRODUCTION two boxes, and this worsens as fluid density, and molecular
non-sphericity, increase.

Computer simulation of simple model fluids has a long  Once a coexistence point has been determined, the
history, and has provided considerable insight into the stabilGibbs—Duhem integration method introduced by K&fkal-
ity of phases and the transitions between tHénunfortu-  lows one to trace out a coexistence curve as temperature, or
nately direct computer simulations of coexisting phases argome other parameter, is varied. The method involves the
prone to finite-size effects: the interfacial contribution to theformulation of a Clapeyron-like equation: a first-order differ-
free energy is significant because of the surface-to-volumential equation giving the derivative ¢say the coexistence
ratio. Consequently a great deal of effort has been spent osressure with respect to an independent thermodynamic vari-
devising simulation techniques that eliminate the simulatiorable. This governing differential equation is then solved nu-
of an interface. merically with a predictor—corrector algorithm and constant-

The location of first-order phase transitions implies de-pressure simulation data for the coexisting phases. The
termining state points for which temperatuFe pressureP,  starting datum for the integration has to be determined by
and chemical potentigk are equal in the two phases; calcu- some other means, as discussed above. Kofke illustrated the
lating x in a simulation can be problematic. Direct test- method through application to liquid—vapor coexistence in a
particle insertion in both phasedecomes inefficient for Lennard-Jones 12,6-fluftf Subsequent work has applied the
dense fluids, and for fluids of highly nonspherical moleculesGibbs—Duhem technique to a range of phase equilibria: the
Of many suggested improvements, methods based ofiple point in Lennard-Jones binary mixtures, where the
gradual insertion or growth of the test partftleseem to be  composition was the independent varialfléhe triple point
reliable and generally applicable, if unavoidably expensivein a fluid interacting via a Lennard-Jonem,()-potential,
in computer time. Given reference values™Pu in each  varying m and n to construct a mutation pathway from a
phase, thermodynamic integration then allows location of th€12,6)-fluid to a square-well fluid® the fluid—solid coexist-
state points where they become equal, and this will be mosénce line in soft spheres interactivig a 1f" potential, vary-
efficient and accurate if the reference points are quite close ting s=1/n (s=0 corresponds to hard spherés?? the
the transition Automaticlocation of the coexistence points is fluid—solid coexistence and sublimation lines in Lennard-
facilitated by the Gibbs simulation technique, introduced byJones(12,6-fluids, varyingT;* the isotropic—nematic tran-
Panagiotopoulo$’ This method simultaneously simulates sition in semiflexible polymers, where the persistence length
two bulk phases which exchange volume and particles in avas the independent varialté.
way that guarantees equality of pressures and chemical po- In the present work we study the isotropic—nemétiN)
tentials. Like test-particle insertion, the efficiency of theliquid crystal phase transition in fluids composed of hard
method is limited by the ease of particle transfer between therolate ellipsoids of revolution. A uniaxial ellipsoid of revo-
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lution is characterized by its elongatiox, the ratio of the expansion coefficients become difficult to determine accu-
major and minor semiaxes, and b respectively. For this rately. The truncation error for a given number of terms in
kind of model the temperaturé plays a trivial role in the the expansion may be gauged by calculafgin a system
thermodynamics, and we formally segT=1 throughout, of aligned ellipsoid$?! In the present work we avoid these
wherekg is Boltzmann’s constant; our interest lies in the problems by evaluating,(e- €') essentially exactly; this en-
transition pressure and coexisting densities for each elongables us to investigate the predictions of the Onsager and
tion. Free energy calculations, along with thermodynamid?arsons—Lee theories for large elongations.

integration, have been used to locate the I-N transition for  This paper is organized as follows. Section Il covers the
hard ellipsoid fluids withx=3,2.75,1/2.75,1/3° For more  Onsager theory and its refinement by Parsons and Lee; in
extreme elongations, the nematic order parameter variatiofec. Il C we present the method used to compute orientation-
with density has been used to locate the transitiordependent second virial coefficients. Section Il sets out the
approximately®*8but no free energy calculations have beensimulation techniques used in this study, especially the for-
performed. To do so, for each elongation separately, would@nulation of the governing differential equation for the
be expensive, especially since fo®=10, the I-N transi- Gibbs—Duhem integration technique, and the scheme
tion density is too high for either efficient direct test-particle adopted for solving this equation, in Sec. Il B. In Sec. IV we
insertion, or the Gibbs ensemble. In the current work, we uséescribe the computational details of the simulations we
a particle growth technique to determine the coexistenc@ave conducted both to determine coexistence points at spe-
points forx=5, and direct test-particle insertion plus Gibbs cific values of elongation and to carry through Gibbs—
ensemble simulation fox=20. Then we integrate along the Duhem integration along the coexistence line. The results are
I-N coexistence linex=5—10 andx=20—10, providing presented in Sec. V, and Sec. VI concludes the paper.
coexistence data at several points in between, and check the

accuracy of the method by approachirg 10 along two |l. THEORY

completely independent routes. o o The Helmholtz free energ§ of N hard elongated par-
Theoretical studies of the I-N transition in hard ellipsoid {jcjes in a volumeV, with number densityy=N/V, consid-

fluids have revolved around Onsager’s theBryvhich is a _ered as a mixture of species having different orientations, is
simple form of density functional theory. The free energy is —

expressed as a contribution from the entropy of mixing ofﬁ_ 3 f .
differently oriented particlegtreated as different species N =InpA=1+ | def(e)n 4Wf(e)+r,§=:2 n
plus a virial expansion in the densitp=N/V. The virial (1)

coefficients,B,,, arise from excluded volume interactions Here 8= 1/kgT. The first term on the right is the ideal con-
which are orientation dependent. Both the entropy andyipution to the free energyA is the de Broglie thermal
excluded-volume terms are functionals of the orlentat|ona|,\,ave|ength' The second term is the contribution from the
distribution function(ODF) f(€) wheree=¢6 is a unit vec-  grientational entropy of mixing, which depends t(e), the
tor, or equivalently a pair of polar angles, defining the mo-gyientational distribution functiofODF), where e is the

lecular orientation. The free energy is minimized with re-principal molecular axis unit vectof(e) satisfies the nor-
spect tof(e), and all of the thermodynamic quantities and malization condition

phase behavior follow. Competition between the orienta-

tional entropy and the excluded volume interactions gives de f(e)=1, )
rise to the I-N phase transition. In the original Onsager

theory, the virial expansion is truncated at Bgterm, and  thus in the isotropic phasie€) =1/4s and the orientational
the method owes its success to the rapid convergencentropy is zero. The terms B,p" ! represent the excluded
B,/B5 10 at asymptotically large elongatiol$At inter-  volume interactions betweem particles. For exampleB,p
mediate elongations, however, the virial expansion is slow t@epresents pairwise interactions, adglis itself a functional
converge and so the higher virial coefficients must be takewnf the ODF

into account. This can be done directh?! by resummation

Bn
n—-1
=P

theories such as the Barboy and Gelbartexpan- B_zzf dede'f(e)f(e)By(e-€). 3
sion20=2% or by renormalized two-particle theories such as

that due to Parsofsand Le€?®?In this paper we deal with B,(e-€') is the orientation-dependent second virial coeffi-
this last formulation. cient and is equal to half the excluded volume of two non-

__ The input for the Onsager and Parsons—Lee theories ispherical hard bodies with orientation vectagsand €'.
B, expressed as an integral involvin§(e) and the Evaluating this quantity is the subject of Sec. Il C.
orientation-dependent second virial coeffici@i(e-e'). In

. A.Onsager theory
the past, the latter has been represented as an expansion in
Legendre polynomialé:?® This expansion converges more ~ The Onsager theory of orientational ordering in hard
slowly asx is increased. Consequently, when studying ellip-elongated particléd involves minimising the free energy
soids of high elongation, many expansion coefficients ardunctional F, truncated aB,, with respect to variations of
needed to accurately repres@i(e-€’), and the high-order the ODF. The relevant expressions are
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F — 2¢4(4-3 B,(e-€
%zln pA3—1+f de f(e)In 47f(e)+Byp, (439 f(e)=C, exp[ — ((ﬁi——@f)f de’ f(e’)zflTo) .
— 6

BPlp=1+Byp, (4b)
In the above,¢=puv, is the packing fraction. For hard

Bur=In pA3+f de f(e)ln 47Tf(6)+28_2p, (40  spheres, the orientational variables disappBate-e') =B,
=4v,, and the usual Carnahan—Starling equafidase re-
covered.

f(e)=C, exp{ —2pf de’ f(e')By(e-€);. (4d) The method of solution of the above equations is exactly

the same as described in the previous section. Both the origi-
Equation(4d) results from functional differentiation of Eq. nal Onsager theory and the Parsons—Lee modification rely
(43) subject to the normalization conditio@; is the normal-  on accurate calculation of the pair-excluded volume
ization constant. This is a self-consistent equationfi@), B,(e-€'). We turn to this now.

which is solved numerically, given a form f@&,(e-€"). Be-

low the critical density there is only one solution, which

corresponds to the isotropic phase, ifée)=1/4w. Above .

the transition density, a nematic solution also exists. Thé- Calculation of - B (e-€’)

order parametelS, is given by For hard potentials the second virial coefficient
B,(e-€') is simply half of the excluded volume of the ori-
S=(3 cogh—3)= f de f(e)(3 cogo—3), (5)  ented particles. Previous attempts to describe the dependence

of the overlap volume on the relative orientation have em-
whered is the polar angle between the director and a particleployed expansions in an orthogonal rotational b&sS:*°
orientation vector. At phase coexistence the pressures armgbr our case, this takes the form
chemical potentials in the two phases are equal, giving two
simultaneous equations to be solved fgy, and p,em, the
isotropic and nematic coexistence densities, respectively. Ba(e-&') =By ot nZl B2nPn(e-€), v

o0

B. Parsons—Lee theory where the expansion coefficienBs , are given in Ref. 21
and P, is thenth Legendre polynomial. For axiosymmetric

Improving the original theory, by direct inclusion of . : . L .
higher virial coefficients, is possible but complicat8d* (Dop) particles this expansion can be simplified since only
’ ' evenn terms need to be included.

The theory may be improved in a more tractable way by This approach is particularly convenient if it is applied
resumming higher virial coefficients in g-expansiorf®-2* bp P Y bp

An alternative approach, which we adopt here, is due dnan Onsager-type treatment that has the ODF expressed in

Parson® and Lee?®2” The Carnahan—Starling expressionqerms of the same basis set. However, the accuracy of the

for the free-energy of hard spheres is applied to the system 0afpproach deteriorates as one considers ellipsoids of increas-
interest, using theorientationally averagedsecond virial Inl_gly I(;)nglll' aspgg ratio. CO_rgparlsfor;] &, for pgrfecftlyh_
coefficient of the ellipsoids as a scaling factor. This approacl"f“gne—ue 'pﬁ(ﬂ gives an idea 9 the magnitude of this
has been shown to be surprisingly successful at predictin§/Tor- B 2=B2=By(e-¢'=1) Sh(ﬁu'd equal the hard sphere
the I-N transiton parameters, fox=31" Like the second \”/|r|al coefficient, i.e.B5/4vg=1. In Table | we
y-expansion, it clearly incorporates some many-body effect®résent;/4v, for ellipsoids of elongatiox=5 tox=20 as

in an average way, while requiring only explicit knowledge calculated with terms up to 10th order in the Legendre poly-

of two-body excluded volumes, which makes it extremely”omia| expansion. As expected, the ratio rises from unity as
easy to use. The relevant expressions are the elongation is increased: the truncation error is less than

4% for 1=x<10, but rises to 21% fox=20. Thus, we

E:m pA3— 1+f de f(e)In 4xf(e) expgct the predictior]s of Onsagef and Parsons th_eories to be
N subject to error at higher elongations, unless a different ap-
o H(4—3) proach is used. S
+(Byl4v ) (63) To study the approach to the Onsager limit it is neces-
(1-¢) sary to have a means for computing the overlap volume of

two oriented convex bodies of arbitrarily large aspect ratio.
3 , Expressions of this sort are available for very few models:
p (1-¢) circular cylinders, spherocylindet$,and (more generally

BP  (1+[(Bylvg)—3]¢+[3—(By/2v0) 1%~ ¢%)

(6b) spheroplateletd32 The result for spheroplatelets is particu-
larly useful in that it may be applied to biaxial and noniden-
Bu=In PA3+J de f(e)ln 47f(e) tical particles. We present in this section an analogous algo-
) 5 rithm for computing the overlap volume of two arbitrary
+(B_2/4v0)8¢_9¢ +3¢ 60 ellipsoids. Although our interest in the present study is with
(1-¢)° ' identical, uniaxial ellipsoids, the method described in this
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TABLE I. Properties predicted by the Parsons the(®y and the Onsager theo) for the isotropic—nematic phase transition in hard uniaxial ellipsoid
fluids. “a” refers to the exact expression f&(e-e’) for which Bl/400:1, “b" refers to the expansion.

BP Pisolpcp Pnem/pcp S
X P o] P o] P o] P o] Bl/4v,
50a 8.3904 9.2490 0.5242 0.9957 0.5472 1.0703 0.6133 0.6029
b 8.3977 0.5244 0.5478 0.6181 1.0011
6.0 a 6.0090 6.5707 0.4554 0.7770 0.4828 0.8484 0.6424 0.6307
b 6.0168 0.4556 0.4836 0.6485 1.0040
70a 4.6632 5.0652 0.4029 0.6378 0.4335 0.7075 0.6652 0.6526
b 4.6712 0.4033 0.4346 0.6723 1.0090
80a 3.8078 41122 0.3617 0.5413 0.3944 0.6082 0.6834 0.6702
b 3.8137 0.3619 0.3956 0.6910 1.0157
9.0a 3.2184 3.4586 0.3283 0.4706 0.3624 0.5346 0.6978 0.6845
b 3.2238 0.3286 0.3637 0.7064 1.0244
10.0 a 2.7889 2.9837 0.3007 0.4164 0.3355 0.4776 0.7096 0.6963
b 2.7931 0.3009 0.3369 0.7188 1.0348
125 a 2.0963 2.2226 0.2489 0.3238 0.2840 0.3786 0.7310 0.7180
150 a 1.6838 1.7728 0.2126 0.2652 0.2467 0.3146 0.7451 0.7326
b 1.6851 0.2127 0.2482 0.7563 1.1090
20.0 a 1.2137 1.2651 0.1649 0.1951 0.1959 0.2359 0.7618 0.7507
b 1.2139 0.1650 0.1976 0.7743 1.2104
30.0 a 0.7841 0.8078 0.1142 0.1280 0.1391 0.1578 0.7765 0.7678
50.0 a 0.4622 0.4711 0.0709 0.0760 0.0881 0.0952 0.7859 0.7800
100.0 a 0.2292 0.2315 0.0365 0.0378 0.0460 0.0478 0.7907 0.7873
200.0 a 0.1144 0.1150 0.0185 0.0189 0.0235 0.0240 0.7921 0.7904
300.0 a 0.0763 0.0765 0.0124 0.0126 0.0158 0.0160 0.7923 0.7912
500.0 a 0.0458 0.0458 0.0075 0.0075 0.0095 0.0096 0.7925 0.7918
700.0 a 0.0327 0.0327 0.0054 0.0054 0.0068 0.0069 0.7925 0.7920
1000.0 a 0.0229 0.0229 0.0038 0.0038 0.0048 0.0048 0.7925 0.7922

section is just as easily applied to two arbitrary, non-whereD, is the diagonal matrix diage(gz,bz‘z,cz‘z) andR

identical, biaxial ellipsoids, and accordingly we adopt a moreis the rotation matrix corresponding to the Euler angles

general notation. ¢ 0y. The coordinate scaling that takes ellipsoid 1 into a unit
The approach we adopt is simple. We take one ellipsoidgphere takes ellipsoid 2 into a form characterized by the ma-

as defining the reference frame for our manipulations, angkix ZZ

we scale all three coordinate axes independently to take the

reference ellipsoid into a sphere of unit radius. This takes the ~A2=SAS, (10)

oriented ellipsoid into a new, biaxial ellipsoid, with dimen- \\heresis the scalin

X ; : ; , , g matrix diag( ,b,,c;). The excluded
sions that will depe.nd upon its orientation as well as itSyolume of a sphere and the ellipsoid definedy can be
original, unscaled dimensions. The problem then become

. éxpressed in terms of the fundamental measures of the
one of determining the overlap volume of a sphere and %Ilipsoid34

biaxial ellipsoid, which is equivalent to determining the vol-

ume of the parallel body of the biaxial ellipsoid. Standard ~ = = ~ , 4w

formulas may be applied, and the resulting overlap volume ~ Vexa™ V2t Sof + Mar“+ —-r7, (1)
rescaled to recover the overlap volume of interest. Details ~ o~ ~
follow. wherer=1 for the unit sphere. Her¥,, S,, andM, are,

Consider two ellipsoids of semiaxesy(b,,c;) and respectively, the volume, surface area, and mean radius of
(a,,b,,c,), respectively. We take ellipsoid 1 as defining the curvature of the scaled ellipsoid. These may be evaluated in
space-fixed frame, and we use the Euler anflese 84>3 to terms of its semiaxes ab,b,,C,), defined such that
define the orientation of ellipsoid 2 with respect to it. Thusa,<b,<TC,. If \;=\,=\. are the eigenvalues &, then
ellipsoid 2 defines the surface

(32, b2,82) = (N 20, 212, (12
T =
(r=r2) Ay(r—rz)=1, (8) The volume is easy
wherer,, is the coordinate of the center of the ellipsoid. is ~ Adm_ ~ _
the matrix of the quadratic form for the oriented ellipsoid; it sz?azbzcz- (13

may be expressed
The surface area is expressed in terms of elliptic
A,=RD,R", (9) integrals®®® |t is useful first to define the eccentricities
J. Chem. Phys., Vol. 105, No. 7, 15 August 1996
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'52 2 3, 2 D. Numerical details
== -1, e&=|=| -1, In this study the Onsager and Parsons theories were each

carried out for hard ellipsoids of revolution with=<&
then =1000, thus approaching the Onsager limit.
The integral equations for the orientation distribution
(14) [Egs. (4d) and (6d) for the Onsager and Parsons methods,
’ respectively were solved numerically. The ODF was repre-
~ Y sented by n points taken uniformly over the(one-
wherem= (C;/b,)%ey /e, p=tan (e;), andF andE are  gimensional 9-range ofe= 0¢; it is independent of. Tak-
elliptic integrals of the first and second kind, respectively ing an initial guessf(6,¢)=3 co2dl4m, Eq. (4d) or (6d)
o was solved for the discretization values by successive sub-
F(<p|m)=f dé(1—m sir? 6) 12, stitution. The integrals in these equations were evaluated us-
0 ing Simpson’s three-eighths rule, and the orientation-
o dependentB, was computed as described in the previous
E(<p|m):J dé(1—m sir? 6)Y2, section. Most calculations were performed takimg 40; a
0 few checks made usinmg= 100 showed no significant change
The mean radius of curvature is given as the integral of thd the results. Convergence of the ODF was taken when no
support function over all directioré; using Tjipto-Margo  discretization value changed by more than d0@ver succes-

and Evans’ expression for the support function of a biaxiaSive iterations. _ _
ellipsoid?° Mz is For comparison, we also used the expansion formulation

of trial ODFs with up to 10th-order Legendre polynomials.
The initial trial ODF was that in the perfectly aligned limit.
The self-consistency equations were iterated until the nor-
malization constant of the ODF had converged to within
+ €, cos6)2. (15  10°S.

The coexistence densities were computed as follows. At
a trial value of the nematic density, the ODF was calculated,
and B, for the nematic phase was computed from E3).

'ézz 2’775252

ap _
=t Y2 (o|m) + e2?E(p|m)
2

—~ 2w T
M2=’azf d(pj sin§ dé(1+ e, Sir? ¢ s
0 0

If the integral overd is taken analyticallyﬁz may be evalu-
ated by a one-dimensional numerical quadrature

- (7 »n. P Q+QMP+Q)Y? with Simpson’s-rule integration. The corresponding nematic
M2=2a2fo de| (P+Q) +§,7In (PQ)T2 ' pressure and chemical potential were computed using the

(16) appropriate equatior[€gs. (4b) and (4c), or (6b) and (6¢)]
- - with the nematic ODF an®,. Two isotropic densities cor-
whereP(¢) =1+ €, s andQ(¢) = €.~ €, Sin"p, and We  1e5n0nding to these values Bfand u were calculated from
ha\{e epr.0|ted the symmetry of the integrand to halve thgne same equations, with(e)=1/4x and the isotropically
reglgﬂ of mthgdragon.l ¢ th iainal ellipsoids i averagedB, given by Eq.(18). For coexistence, the two

€ excluded volume 0 t € two _original ellipsoids Is isotropic densities should be equal. The trial nematic density
recovered by removing the scaling frovia, was updated with a bisection method until the difference

= i i it 0
Voo @) =a;b161 Voo Q) 17) between the two isotropic densities was less than°10

andB, is obtained directlyB,=3V,. This result(i.e., the
uniaxial special cas€l—e=¢#6, b;=c,;, b,=c,) may be
inserted into Eq(3) for B, given an orientational distribution
function f(€). We note that thesotropically averaged ex- In this section we describe some features of the simula-
cluded volume is expressed directly in terms of the fundation techniques employed in this study. The Gibbs ensemble
mental measures of the two ellipsoids, as given by Kitfara simulations were carried out in a standard fashion, and we

3 1 simply give the relevant details in Sec. IV. To calculate the
BS°=2 | Vi +Vo+ —(M;S,+M,S)) |. (18 ~ chemical potential at designated state points, we used either

2 4m direct test particle insertion, or a version of the force-balance

Ill. SIMULATION TECHNIQUES

This algorithm is easily programmed as a subroutine fofapproach due to Attard_, and thi_s_latter technique_ is described
use in the numerical calculation of the Onsager/Parsons tredft S€c- lIl. Following this, and fitting of the equation of state
ments of the isotropic—nematic transition. It applies generi the neighborhood of interest, the chemical potential was
ally to all biaxial ellipsoids, and works well even for the €valuated using the expression
most extreme shapes. No doubt certain efficiencies could be
introduced in the development, and with some effort the re- w(P)= o+ IP d_P , (19)
sults might be cast in a more explicit form. However, this
algorithm proved sufficiently rapid for our purposes. Our nu-
merical calculations are described in the following section. where uq is the chemical potential calculated as just men-

Po
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tioned at a reference pressig. The coexistence conditions to a randomly selected position in the box. These moves are
were then solved fop;s, and pnen, the isotropic and nematic unbiased: They are rejected if they incur an overlap, and
coexistence densities, respectively, accepted otherwise. The rationale is that the particle ex-
_ changes will be accepted frequently wheris high, while
Piso(Piso) = Prenf Prer), (20 the random relocations will succeed wheis low. Between
Hiso(Piso) = Mnerd Prem - (21)  them, these moves ensure that the cavity particle moves rap-

In this way we located the transition point for the chosenIdIy around the entire sample.

elongation, and this constituted the starting point for the
Gibbs—Duhem runs. Describing the formulation and imple-
mentation of the Gibbs—Duhem technique for these systemB. Gibbs—Duhem integration

is the main objective in Secs. Ill B-IIl E. Having established the location of the I-N transition for

a particular ellipsoid elongatiox, we use the Gibbs—Duhem
A. Force-balance method method to move along the coexistence line in Ehex dia-

The force-balance technique was introduced by Abtarddram. In other words, we seek a Clapeyron-type differential
as a robust way of measuring the chemical potential of fluids€duation for the coexistence pressure, as a function of ellip-
One of theN particles in a conventional MC simulation is SOid elongation.
designated the “cavity,” with a variable size characterized ~ Consider a one-component system with two coexisting
by a scaling parameter which takes values©x<1. Atthe ~ Phases, denoted hy and y, having equall Px. An infini-
lower limit, k=0 corresponds to a point particle: the chemi- tesimal change in any of the thermodynamic variables, main-
cal potential of this species is exactly calculable. At the upfaining the coexistence conditions, must result in equal
per limit, k=1 corresponds to a full-sized particle; a set of changes of the chemical potentials in both phases
(typically 10—20 intermediate values ot is defined at the dua=du, . (22)

start of the simulation. During the simulation, standard o ) ) )
Monte Carlo moves are supplemented by attempted transihese total derivatives can be written in terms of partial de-

tions betweenx-states of the cavity particle. A probability "vatives with respect to the thermodynamic variables. We

histogramP(x) is constructed of-state populations during Shall chooseP and an as-yet-unspecified variable,which

the simulation. This can be used to calculate the free energ§aracterizes the particle anisotropy.

F(k) for each species, and in particular fer 1, relative to o e

point particles, and hence the chemical potential. To ensure dM=<X) d)\+(a_P

adequate sampling of all the values, a weighting function TP

WI(k) is introduced into the acceptance/rejection criterion forwhere we use the thermodynamic relationsul{dP)r \

k transitions, and a corresponding correction factor intro-=1/p=v, the volume per particle, and/f/d\)t p=I", de-

duced in the calculation of chemical potential. Scaled-fining a thermodynamic variablE conjugate ton. Equation

particle theory may be used to give a reasonable first esti22) becomes

rt?;?d%f the weighting function; full details are provided by I, d\+v, dP=T, d\+v, dP, (24)
We have adopted this scheme, and improved its effifrom which we obtain a Clapeyron-type equation,

ciency in the following ways. First, we progressively refine dP AT

dP=T d\A+v dP, (23
TA

the weighting function as originally envisaged by Attaraly _—— (25)

conducting a series of preliminary simulations and using the dx Av

“entropy sampling” prescription of Le& In each simula- where

tion, conducted with weighting function/(«), we accumu- _

late an un-normalized probability histografi(x), i.e., the Al=I,=T,, (263

number of occurrences of eaehstate. Then, for the next 1 1

simulation run,W(x) is replaced byW(x)—kgT In P’ (k) Av:vy—vLFp——p— : (26b)
Y a

whereverP' (k) is nonzero, otherwise it is left unaltered. Af-

ter a few iterations, the weighting function generates esserEquation (25 represents a first-order differential equation

tially uniform sampling over the range of cavity particle Which describes how the pressure of two coexisting phases

sizes, and ultimately gives a good estimate of the chemicathanges with the thermodynamic variable, As noted in

potential. Refs. 8 and 9, if Eq(25) is written
Second, we attempt to improve the sampling of cavity 4|, p AT

particle positions, to avoid the danger of the cavity remain- G~ - P A’

ing essentially static, and interacting with only a localized

region of the simulated fluid. Every MC sweep consists ofthe right-hand siddintegrand is a smoother function than

conventional moves of cavity and normal particles, plus arthat of Eq.(25). All numerical integration techniques benefit

attempted exchange of the cavity position with a randomlyfrom a slowly varying integrand, and so this is the governing

selected full particle, and in addition an attempt to relocate idifferential equation we use here.

(27)

J. Chem. Phys., Vol. 105, No. 7, 15 August 1996

Downloaded-17-May-2005-t0-128.205.114.91.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jcp.aip.org/jcp/copyright.jsp



Camp et al.: The isotropic—nematic phase transition 2843

C. Calculation of T': The general case
: _ ) A(N,P,T;)\)zf dV exp[— BPV}Q(N,V,T;\)
To calculatd” we must relate it to a mechanical quantity

measurable in a simulation. First, we note tlat N, 1
where G is the Gibbs free energy ard is the number of = 13NN f dV exp{— BPV}
particles, and so N!

xf drNexp{— BU(rN; M)}, (30

(28)
2 TP

1/(0G
N
Next, we expres§ in terms of the isothermal—isobaric par- whereg=1/kgT. In the equations abov@(N,V,T;\) is the
tition function, A(N,P,T;\), for a particular system speci- canonical partition function for a system with anisotropy pa-

fied by the anisotropy parametex, rameter\, A is the de Broglie thermal wavelengtH! is the
set of configuration space coordinates ah@") is the con-
G=—kgT In A(N,P,T;\), (29 figurational energy. Note that the prefactor arising from ki-
netic part of the Hamiltonian is independent Xaf We can
with A(N,P,T;\) given by now recast Eq(28) in terms of A(N,P,T;\)

o keT JdVexp(—BPVHAr exp{— BU(r™ A + o))}
r——mo NoN  [dV exp{—BPV}[dr" exp[—BU(r";\)}

keT [dV exp{—BPV}[drN exp{—B[U(rN;N)+AUT}

=— lim
oo NON  [dV exp[—BPV}[drN exp{—BU(rN;\)}
—im L AU 3L
= lIm Sen n{exp{— BAU}), (31
|
where AU is the change in configurational energy upon e e
changing\ to A+ é. a= | 77— b= T | - (33
ging &InaPb &Inbpa
D. Calculation of I': The hard ellipsoid fluid To calculatel’,, (and similarlyT",), we note that for hard

We now turn to the calculation df in a fluid of hard  particle systems, E¢31) is equivalent to
uniaxial ellipsoids. Here we use the method pioneered by

) kgT
Eppenga and Frenk&,and Perram and Wertheif/° to Tp=— lim — In P2 )\ =|n b, with a fixed.
measure the pressure in a constant volume simulation. sn—0 NOA
Throughout our simulations we choose the semiaxaadb (34)

such that &b?=1. The molecular volume of the ellipsoid, paccept

v, IS therefore equal to that of a hard sphere with qnit diln b—In b+ &\, holding a fixed, without overlap between
ameter ¢o=/6), and the close-packed densjiy,= 2 ir- any pair of particlesPi***ican be expanded in terms of the

respective of elongation. The molecular volume is Conserveﬂrobability of overlap between a pair of particlésand j,
when altering the elongation, and so assay, increaseb lap.
9 9 @assay denoted byPp"e:

must decrease. We must take into account both of these

is the probability of accepting the ghost change

changes in the calculation &f In practice we chose to alter ccept_ verlap verlap
A=Inb as the thermodynamic variable, since this simplifies L& _il;[j (1= 750 Bwl_; Poii (39
the computationI is calculated in terms of partial deriva- |
tives: We now identify Py’ “" with the ensemble average of the
number of overlaps upon the particle scaling
r:( L ) In b—In b+ &\
Inb
d Pug <Ngverla;>
i Tt (36)
d d dina , 1 —
Y D BN —Iy—2l., (32 IN(N—1)
dinb dlna dinb . .
P.a P.b Equation(35) can now be expressed in terms of an ensemble
where average
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2844 Camp et al.: The isotropic—nematic phase transition

Nove”aF} TABLE Il. Chemical potentials for various hard ellipsoid fluids. The abbre-
p’éccepl: 1— 2 A =1— < Ngvef|ai>_ (37) viations are as follows: FBorce-balance Monte CarlpT| (thermodynamic
i>] %N(N— 1) integration), Pl (particle insertiop, GS (Gibbs simulation

Using the fact tha\ should be small, we can substitute Eq. X plpey “ Method
(37 mtp Eqg. (34) and expanding the logarithm to lowest 5 0.450 1135 B
order gives, 5 0.550 15.33 FB

<Noverlap> 5 0.505 14.40 TI

. b
Tp= lim kgT (39) 5 0.531 14.40 Tl
S\—0 Né)\

20 0.100 2.61 Pl

The calculation ofl ', in a simulation is thus carried out as 20 0.213 6.60 P

follows. The minor semiaxisb, is scaled by a factor of 20 0.153 6.06 TI
(1+6N), where S\ is small and positive, witla held con- 28 g'igg 2'82 (?S
stant. The number of pair overlaphlg"®"* is then deter- 20 0.183 6.04 Gs

mined; b is then returned to its appropriate value for the
current ellipsoid anisotropya is scaled in a similar fashion
and the number of pair overlaphi"®"®", counted. The in-
stantaneous value &f is then calculated and accumulated as
a simulation average,

 kgT
T NS

details of the Gibbs—Duhem integrations themselves. Except
as outlined above, standard hard-particle Monte Carlo and
molecular dynamics simulation techniques were U$éd.
Throughout this work, truncated octahedral periodic bound-
ary conditions were employed, and we used both the equiva-
lent ellipsoid overlap criteria due to Perram and
E. The integrator Wertheini®#%and Vieillard-Barorf:?43

r (Ngverlap_ 2Ngver|ap>, (39)

which is equivalent to Eq32).

Starting from a simulation of both phases at the knownA. Starting points
coexistence pressuf for a given elongation parametar,
we wish to move to a new transition press&ecorrespond-
ing to new elongatiorx + AN, whereAN\ is the chosen step
size in A=Inb. Having evaluated’, and the volume per
particlev =1/p, in both simulation boxes at pressupe we
evaluate the right-hand sidenhs) of Eq. (27), which we de-
note@. There are many nymerica! techniqu_e-s available forlocated directly by Gibbs ensemble simulation.
solving first-order differential equations. In this work we em-

ploy a straightforward trapezoid predictor—corrector method The chemical potential fox=5 was determined at
The new coexistence pressul, is predicted by Plpey=0.45 (isotropic phase and p/pe=0.55 (nematic

phase. We used constatvVT MC with N=216 particles;
P'=P exp{®AN}. (40)  the “cavity” particle was allowed 14 values of scaling pa-
rr_ameterlc between a point particlex(=0) and full size
(k=1). Translational and rotational displacements were
chosen so as to give an acceptance ratio in the range 40%—
50%. The biasing function foxk moves was estimated ini-
"=P exp{2AN (D +D")}. (41) tially by an equilibration run of 125 000 MC sweeps, and
was refined throughout five production runs each consisting

To do this, a simulation is started at a pressBfeand a ot 250 000 MC sweeps. The results for the chemical poten-
running average ob’ is accumulated over a number of MC +ia1 are shown in Table II.

sweeps, after which the pressure is corrected as inJ,. Accurate equation-of-state data for the 5 system have

This process is repeated until successive corrected pressurigsan, reported previougf* but extra data close to the I-N

converge within a given tolerance. Note that the valBles ansition were needed. We have carried out molecular dy-
and® do not change during the course of a simulation: Theynamics(MD) simulations ak=>5 at many state points in and

are t'he values for the previous_ elongation: A production UNround the I-N coexistence region, 04/ pcy=<0.55. We
at this correctgd pressure prowdes anew integrand by whicfjgeq a system siZ¢= 216, and run lengths in the range 1—3
the next coexistence pressure is predicted. X 10° collisions per particle; close to the transition it was
essential to allow such long times for the system to equili-
IV. SIMULATION RUNS brate. The results are shown i.n Table Il and Fig. .1. Also
shown in the table is the nematic order paramededefined
We describe here the calculations of chemical potentialin Eq. (5), and calculated from the highest eigenvalue of the
and the Gibbs ensemble simulations, used to provide startingecond-rank order tens&t*® For macroscopic systems, the
points for the Gibbs—Duhem integrations. Then we give fullisotropic phase is characterised By0, and the perfectly

We have determined the chemical potential in the isotro-
pic and nematic phases using the force-balance method of
Attard® (see Sec. Il A for x=5, and by direct test particle
insertion forx=20. In each case, equation-of-state data in
both phases were used to locate the coexistence points by
thermodynamic integration. The transitionxat 20 was also

Next, a corrector stage is performed where the running ave
age of the rhs of Eq27), denoted byd’, is used to correct
the predicted pressure
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TABLE lIl. Equation of state data for thge=5 hard ellipsoid fluid from

MD and MC simulation N=216). We give the density as a fraction of 8.0 T ) !
close-packed density, pressuPeand nematic order paramet8r Results
marked with an asterisk*) are from MC simulation(Refs. 18 and 44
Estimated errors in the last digit are in parentheses. oo .
.
plpep P S plpcp P S .
*0.450 5.342) 0.131) 0.510 7.082) 0.5058)
*0.475 6.223) 0.161) 0.511 7.102) 0.5178) 70t _"" k
0.480 6.426)  0.1754) 0512 7.082)  0.5416) o
0.484 6.558)  0.1957) 0513 7.112) 0.5458) .
0.488 6.691) 0.2217) 0.514 7.102) 0.5657) o
0.492 6.851) 0.2219) 0515 7.18) 0.5497) 60 F i
0.496 6.902) 0.301) 0.516 7.181) 0.5815)
0.500 7.021) 0.3309) 0.518 7.170) 0.5984)
0.502 7.082) 0.371) 0.520 7.27) 0.6094) ¢
0.503 7.0 0.4011) 0.522 7.281) 0.6323) 5.0 ) . L
0.504 7.082) 0.401) *0.525  7.369)  0.633) 0.40 0.45 050 0.58
0505  7.062)  0.421) 0530 7.443)  0.671) PPer
8283 ;832 8323 ggig ;?g; 8?322 F_IG. 1._ Equation of sta_te data for the=5 hard ellipsoid fluid from‘M_D
0.508 7.082) 0'47(19) 0'545 7.884) 0'7:{1) S|mt_JIat|on @:_216) (points. Coemst_ence data from thermodynamic inte-
) ’ : ' ) ) gration are indicated by the dotted lines.
0.509 7.062) 0.4997) *0.550 8.147) 0.704)

2845

inscribed sphere in the truncated octahedral simulation cell.

aligned nematic phase 8= 1. Finite-size effects are appar- 1iS is given by
ent in the order parameters, however, in the sense that even

in the isotropic phase they take valu@$N 2. Fins= V3L/4, (42
After fitting the equation of state, the values Bfand
P satisfying the thermodynamic coexistence conditions weravherelL is the length of the cube containing the truncated
calculated. I-N coexistence data for tke-5 hard ellipsoid octahedral simulation cell. As can be seen from Table V, the
fluid are presented in Tables Il and VI. system size for th&= 20 simulations was too small to avoid
Equation-of-state data for the=20 system were ob- periodic image interactions for the most unfavourable orien-
tained by constant-volume and constant-pressure MC simuations of particles. However, the results are in good agree-
lations ofN=500 particles and are presented in Table IV andment with Gibbs simulations carried out with a larger sys-
Fig. 2. We used approximately 50 000 MC sweeps at eackem, which we shall now describe, and we believe that the
state point. The chemical potential was determined using Wisystem size effects are small.
dom test particle insertidnusing 500 attempts per MC In the x=20 system, the I-N transition occurs at suffi-
sweep. The results are shown in Table II. ciently low density for the Gibbs ensemble metfbédo be
At this point we note that the system sizes were chosempracticable. The simulation was started with=1000 par-
to avoid interactions between periodic images. Such interadicles in each box, and the box size was large enough to
tions are avoided if @<r,;,s, wherer,, is the radius of the completely rule out interactions between periodic images

TABLE VI. Coexistence data for the isotropic—nematic phase transition in hard ellipsoids at various elongations. All results are obtained by Gibbs—Duhem

integration except for fthermodynamic integratiorand f (Gibbs simulation Estimated errors in the last digit are in parentheses.

X N P Fiso Pisolpcp Miso Iem Pnem/Pcp Mnem S
5.000 216 7.40 —10.54) 0.5075) 14.40 -8.36) 0.5296) 14.40 0.66
5.743 216 5.84 —10.75) 0.4544) 12.57 —8.1(5) 0.4829) 12.59 0.66
6.597 216 4.59 -10.803) 0.40Q3) 10.98 —-8.1(6) 0.4336) 11.02 0.65
7.579 500 3.70 —10.25) 0.3615) 9.81 —-7.54) 0.3914) 9.86 0.69
8.706 500 3.03 —10.15) 0.3215) 8.87 —7.74) 0.3505) 8.93 0.71

10.00 500 2.50 -9.903) 0.2833) 8.09 -7.22) 0.3214) 8.17 0.69
10.00 1000 2.48 —10.03) 0.2842) 8.38 —-7.23) 0.3213) 8.33 0.75
11.49 1000 1.93 -9.602) 0.2421) 7.34 —-7.94) 0.2742) 7.35 0.69
13.20 1000 1.71 -9.93) 0.2191) 7.10 -7.12) 0.2564) 7.09 0.74
15.16 1000 1.47 -9.8(2) 0.1941) 6.75 -7.12) 0.2301) 6.74 0.75
17.41 1000 1.28 —9.4(3) 0.1672) 6.44 —-7.12) 0.1942) 6.42 0.73
20.00 500 1.10 -9.6(1) 0.1531) 6.06 -7.21) 0.1841) 6.06

20.00 1000 0.1581) 6.044) 0.1831) 6.044) 0.75
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TABLE IV. Equation of state data for the=20 hard ellipsoid fluid from MC simulationN=500). We give
the densityp as a fraction of close-packed density, pressirand nematic order parametér V denotes
constant-volume MC simulations, P denotes constant-pressure MC simulations.

plpep P S Ens. plpep P S Ens.
0.1000 0.482 0.040 \% 0.1700 1.085 0.665 \%
0.1100 0.577 0.048 \Y 0.1800 1.113 0.740 \Y
0.1200 0.684 0.049 \% 0.1830 1.113 0.766 P
0.1291 0.805 0.039 P 0.1850 1.150 — P
0.1300 0.806 0.039 \ 0.1900 1.146 0.803 \
0.1395 0.920 0.064 P 0.1940 1.146 0.796 P
0.1400 0.919 0.055 \ 0.2000 1.234 0.825 \Y
0.1498 1.059 0.105 P 0.2110 1.237 0.860 P
0.1500 1.058 0.098 \ 0.2130 1.275 0.863 P
0.1530 1.150 — P 0.2400 1.400 0.902 P
0.1600 1.187 0.227 \Y 0.2500 1.500 0.913 P

(see Table Y. We carried out an equilibration run of 5000 B. Gibbs—Duhem runs
MC sweeps and a production run of another 5000 MC
sweeps over which the coexistence densities were average
Each MC sweep consisted of an attempt to translate an
rotate each particle in each bdglisplacement parameters
chosen to give a 40%-50% acceptance Jaticonservative Constant-pressure MC simulations were performed in
volume exchange between the boxes, and 50 000 attempts .

. . o h phase simultaneously with system sizes between
transfer particles in a random direction between the boxe§\.|:216 andN'=1000, depending on elongatigsee below:
. - 0 _ 0 L .
With this number of transfer attempts, 1%—2% of the total ach MC sweep consisted of an attempted translation and

number of partlcles were 'Fransferred, on average, per .M otation per particlédisplacement parameters chosen to give
sweep. In Fig. 2, density histograms from Gibbs simulation 40%-50% acceptance raticand an attempted volume

are superimposed on the equation of state, showing goo ange. To calculatE, every 10 MC sweeps the ellipsoid

agreement with the coexistence data from thermo_dy_nam'aimensions were scaled and the number of resulting overlaps
integration. The chemical potential was calculated within the ounted. as outlined in Sec. Il C. with\=0.005. This

(F;Ibblf ﬁ?ﬁ_‘:}mble L|ISIng thﬁ eXp.rei_S'?)? ?I'Vle& by $m|t aNlhoice is small enough to give the asymptotic behavior in
renket. e results are shown in Table Il. |- coeX|stenceEq_ (39) but large enough to result in a statistically signifi-

S?ta for thex=20 hard ellipsoid fluid are presented in Table cant number of overlaps. In the predictor—corrector stage

was accumulated as a running average, and the pressure was

Gibbs—Duhem simulations were conducted, integrating
ong the isotropic—nematic coexistence line fram5 to
=10 and fromx=20 tox= 10, using starting values deter-
mined as described above.

2.0 T T T T TABLE V. Ratios of the ellipsoid length @ and the radius of the inscribed
spherer;,s [see Eq.(42)], in the truncated octahedral simulation cell at
nematic coexistence densities for systems with elongations in the range
x=5 to x=20. The coexistence data were determined by Gibbs—Duhem

15 . E integration in all casegsee Table VI except for t(thermodynamic integra-

4 tion) and 1 (Gibbs simulation
< : 2 N X 2a Pnem/Pcp 2alTins
10 1
. 216" 5.000 2.924 0.529 0.811
- 216 5.743 3.207 0.482 0.862
. 216 6.597 3.517 0.433 0.912
os | . ¢ i 216 7.579 3.858 0.395 0.971
500 7.579 3.858 0.391 0.731
500 8.706 4.232 0.350 0.773
500 10.00 4.642 0.320 0.823
00 . ! ) . 1000 10.00 4.642 0.321 0.653
0.05 0.10 0.15 0.20 0.25 0.30 1000 11.49 5.091 0.274 0.680
PPep 1000 13.20 5.584 0.256 0.730
1000 15.16 6.125 0.230 0.772
FIG. 2. Equation of state data for the=20 hard ellipsoid fluid from 1000 17.41 6.718 0.194 0.801
constant-volume and constant-pressure MC simulatidhs §00) (points, 500° 20.00 7.368 0.184 1.086
with the density histogram from Gibbs simulati¢solid line). Coexistence 1000 20.00 7.368 0.183 0.861

data from thermodynamic integration are indicated by the dotted lines.

J. Chem. Phys., Vol. 105, No. 7, 15 August 1996

Downloaded-17-May-2005-t0-128.205.114.91.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jcp.aip.org/jcp/copyright.jsp



Camp et al.: The isotropic—nematic phase transition 2847

corrected every 10000 MC sweeps until it had converged to
within 10 2. The production run, wherE was accumulated
as a block average, consisted of 50 000—80 000 MC sweeps.
The integration step siz&\, was chosen to bgln2, which 8.0
results in five integration steps betweea5 andx=10, and .
five more betweenx=20 andx=10.

The ratios of the ellipsoid length ang,s [see Eq.(42)]
in the nematic phase forsx=<20 are shown in Table V. &
The densities shown in Table V are those at coexistence with |
the isotropic phase. For the integration fror=5 to / :
x=7.579 a system size =216 was sufficient; from this
point tox=10 a system siz&l=500 was required; between 20} .
x=10 andx=20 a system size odl=1000 in each phase 1
was needed. System size effects on the chemical potential
and pressure may be important in evaluating phase coexist- %% g5 0.05 010 015 0.20 025
ence. Smit and Frenkel have given an explicit expression for 1

the finite-size corrections to the excess chemical potéhtial _ _ _ _ _
FIG. 3. The isotropic-nematic coexistence pressure versxs Gibbs—

10.0

6.0

[1-kgTp KT]2 Duhem integratioripoints, Parsons theorgsolid line), Onsager theorydot-
Aﬂﬁx: (43 ted line.
2Np«kt
wherext is the isothermal compressibility

gives an idea of the accumulated errors in this quantity; the
coexistence densities are almost identical via both routes.

In Table | we present the corresponding coexistence data
. predictions from Parsons and Onsager theory, using the “ex-
where the last formula applies in the CONSWIRT en- 5. expression foB,(e-€') as well as the Legendre expan-
semble. To gauge the effect of changing system sizes &, Eq (7). Clearly the results using the expansion for
x=7.579, Au was calculated at the relevant coeX|stenceBz(e,e,) are subject to truncation errors abecomes large,
pressure as evidenced by the tabulated valuesB&MUO, and so elon-

Ap=In(pr1e/ psod + Ausis— Ausso, (45) gations only up tox=20 were studied with it. At lowx the

coexistence results are very similar. From now on we shall

where the subscripts denoté. In both the isotropic and .y consider those results obtained with the exact values of
nematic phased u~0.01, and so the finite-size corrections

were deemed to be small compared to the numerical accu-*
racy of the integration technique. We note that a more accu-
rate expression for the finite-size correction to the chemicai
potential has been given by Siepmaetral,*® but Smit and
Frenkel's result is sufficient to show that it is small in the
present case.

1
KT=—

\Y

(44)

av) _(8v?)

P~ VkgT’

In Fig. 3 the coexistence pressure is shown as a function

f 1/x. The Parsons predictions are seen to represent the
imulation results more accurately than the Onsager theory.

As x becomes large, the Parsons and Onsager theories con-
verge, signalling the approach to the Onsager limit.

This approach is seen more clearly on a plot of the co-
existence densities againsk,LlAs shown in Fig. 4. It is con-
venient to scale the densities for each eIongatiorBﬁ?as

In Table VI we summarize the coexistence pressuregiven by Eq.(18). As 1k—0, the Parsons results are seen to
densities and nematic order parameters at the transition, faollapse onto the Onsager predictions in both phases. Spe-
5<x=20, as determined by Gibbs—Duhem integration. Thecifically, in the Onsager limit, pis,B5°=3.291 and
chemical potentials of the two phases provide a measure of izs°:4,209; the approach quiZSO in the two phases is
integration accuracy along the coexistence line, and havehown in Fig. 5. Simulation results are also shown in this
been calculated simply by integrating Eg3) using the trap-  figure. In earlier work Le® estimated that the Parsons re-

V. RESULTS

ezoid rule sults, in the case of the hard Gaussian overlap model, col-
Ao P, lapse onto the Onsager results ke 25, from a graph simi-
,u,zzlul—l—f Fd)\+f vdP lar to Fig. 4. A graph such as Fig. 5 shows this effect much
A P1

more clearly. The Parsons results are clearly more accurate,
=1+ 2T+ T No— N+ 3(vat+v)(Po—Py). with respect to simulation_ dgtq, than the Onsager predictions
away from the Onsager limit, i.e.,<5x=<20.

(46) The nematic order paramet&, at coexistence is shown
At each elongation along both paths=5—10 and as a function of X in Fig. 6. The simulation results give an
x=20—10 the chemical potentials in the two phases arendication of a rise inS asx—, but statistical errors and
equal to within 0.08. The chemical potentialsxat 10 agree finite-size errors preclude a more accurate interpretation. In-
to within 0.29(isotropig and to within 0.16nematig, which  terestingly the Parsons transition order parameters are higher
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FIG. 4. The isotropic-nematic coexistence densities versys Gibbs— FIG. 6. The nematic order parameters at coexistence versusGiibs—
Duhem integratioripointsg, Parsons theorgsolid line), Onsager theorydot- Duhem integratioripoints, Parsons theor{solid line), Onsager theor{dot-
ted ling. ted line.

than the Onsager results at a given elongation, despite théd. CONCLUSIONS

(_)nsage_r theory predicting higher nematic coexistence de_nsi— We have tested the versatility of the Gibbs—Duhem tech-
ties. This is due solely to the nature of the transformationyiq,e py application to the liquid crystal phase transition in
between the density variabléose multiplied byBy) inthe  pard uniaxial ellipsoid fluids. The coexistence pressure line
Onsager4a and Parsongsa expressions. The relative den- g 3 function of elongation has been mapped out in the range
sity change,Ap/p, where p=(pisot prem)/2, predicted by  5<y<20. Matching the results at=10 from two indepen-
the Parsons theory should be smaller than that predicted yent routes has provided a good check on the accuracy of the
Onsager theory. This is indeed the case, as illustrated in Fignethod. Reference 13 provides an analysis of the error in the
7: Onsager theorpverestimateshe strength of the transi- njtia| coexistence pressure carried through the integration,
tion, as measured in this way. In terms of the simulationyssyming no integration errors. This showed that subsequent
results, the relative density change is a more accurate indisstimates of the coexistence pressures will be worse on ap-
cator of the strength of the transition, than the value of thg,oach to a weak transition or critical point. On this basis the
order parameter. The order paramet&soften used by ex-  yesyits from the integration path from=5—10 should, in
perimentalists as such an indicator, are significantly highebrinciple, be slighty more accurate than those from
for these systems than those measured in real mesophasgsog . 10.
(S~0.4). We see the transition weakening with decreasing elon-
gation: The fractional density differencp/p falls from
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FIG. 5. The isotropic—nematic coexistence densities scaleBiiziﬂyin the
isotropic phase, versus xt/ Gibbs—Duhem integratioripointy, Parsons  FIG. 7. The percentage density change versus Gibbs—Duhem integra-
theory (solid line), Onsager theorydotted ling. tion (points, Parsons theorysolid line), Onsager theorydotted line.
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