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The isotropic–nematic~I-N! phase transition in hard ellipsoid fluids has been studied by computer
simulation, using the Gibbs–Duhem integration technique introduced by Kofke; and theoretically,
using Onsager theory and the Parsons–Lee improvement. In the simulations, the I-N coexistence
line is mapped out in theP–x plane, whereP is the pressure andx is the elongation, by numerically
integrating a Clapeyron-like first-order differential equation, using constant-pressure simulation data
for the two coexisting phases. The elongation range 5<x<20 has been studied, using independent
starting points provided by chemical potential calculations and thermodynamic integration of the
equation of state atx55,20, plus a direct Gibbs ensemble simulation atx520. The Onsager–
Parsons–Lee theory has been applied to the I-N phase transition for aspect ratios up tox51000,
affording an accurate investigation of the approach to the Onsager limit for this model. This
involved the numerical computation of the orientation-dependent second virial coefficient in a way
that avoids expansions in Legendre polynomials, so as to be accurate at high elongation. Over the
elongation range studied here, agreement between simulation and the Parsons–Lee theory is good.
© 1996 American Institute of Physics.@S0021-9606~96!50231-X#

I. INTRODUCTION

Computer simulation of simple model fluids has a long
history, and has provided considerable insight into the stabil-
ity of phases and the transitions between them.1,2 Unfortu-
nately direct computer simulations of coexisting phases are
prone to finite-size effects: the interfacial contribution to the
free energy is significant because of the surface-to-volume
ratio. Consequently a great deal of effort has been spent on
devising simulation techniques that eliminate the simulation
of an interface.

The location of first-order phase transitions implies de-
termining state points for which temperatureT, pressureP,
and chemical potentialm are equal in the two phases; calcu-
lating m in a simulation can be problematic. Direct test-
particle insertion in both phases3 becomes inefficient for
dense fluids, and for fluids of highly nonspherical molecules.
Of many suggested improvements, methods based on
gradual insertion or growth of the test particle4,5 seem to be
reliable and generally applicable, if unavoidably expensive
in computer time. Given reference values ofTPm in each
phase, thermodynamic integration then allows location of the
state points where they become equal, and this will be most
efficient and accurate if the reference points are quite close to
the transition.Automaticlocation of the coexistence points is
facilitated by the Gibbs simulation technique, introduced by
Panagiotopoulos.6,7 This method simultaneously simulates
two bulk phases which exchange volume and particles in a
way that guarantees equality of pressures and chemical po-
tentials. Like test-particle insertion, the efficiency of the
method is limited by the ease of particle transfer between the

two boxes, and this worsens as fluid density, and molecular
non-sphericity, increase.

Once a coexistence point has been determined, the
Gibbs–Duhem integration method introduced by Kofke8,9 al-
lows one to trace out a coexistence curve as temperature, or
some other parameter, is varied. The method involves the
formulation of a Clapeyron-like equation: a first-order differ-
ential equation giving the derivative of~say! the coexistence
pressure with respect to an independent thermodynamic vari-
able. This governing differential equation is then solved nu-
merically with a predictor–corrector algorithm and constant-
pressure simulation data for the coexisting phases. The
starting datum for the integration has to be determined by
some other means, as discussed above. Kofke illustrated the
method through application to liquid–vapor coexistence in a
Lennard-Jones 12,6-fluid.8,9 Subsequent work has applied the
Gibbs–Duhem technique to a range of phase equilibria: the
triple point in Lennard-Jones binary mixtures, where the
composition was the independent variable;10 the triple point
in a fluid interacting via a Lennard-Jones (m,n)-potential,
varying m and n to construct a mutation pathway from a
~12,6!-fluid to a square-well fluid;10 the fluid–solid coexist-
ence line in soft spheres interactingvia a 1/r n potential, vary-
ing s51/n (s50 corresponds to hard spheres!;11,12 the
fluid–solid coexistence and sublimation lines in Lennard-
Jones~12,6!-fluids, varyingT;13 the isotropic–nematic tran-
sition in semiflexible polymers, where the persistence length
was the independent variable.14

In the present work we study the isotropic–nematic~I-N!
liquid crystal phase transition in fluids composed of hard
prolate ellipsoids of revolution. A uniaxial ellipsoid of revo-
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lution is characterized by its elongation,x, the ratio of the
major and minor semiaxes,a and b respectively. For this
kind of model the temperatureT plays a trivial role in the
thermodynamics, and we formally setkBT51 throughout,
where kB is Boltzmann’s constant; our interest lies in the
transition pressure and coexisting densities for each elonga-
tion. Free energy calculations, along with thermodynamic
integration, have been used to locate the I-N transition for
hard ellipsoid fluids withx53,2.75,1/2.75,1/3.15 For more
extreme elongations, the nematic order parameter variation
with density has been used to locate the transition
approximately16–18but no free energy calculations have been
performed. To do so, for each elongation separately, would
be expensive, especially since for 3<x<10, the I-N transi-
tion density is too high for either efficient direct test-particle
insertion, or the Gibbs ensemble. In the current work, we use
a particle growth technique to determine the coexistence
points forx55, and direct test-particle insertion plus Gibbs
ensemble simulation forx520. Then we integrate along the
I-N coexistence linex55→10 andx520→10, providing
coexistence data at several points in between, and check the
accuracy of the method by approachingx510 along two
completely independent routes.

Theoretical studies of the I-N transition in hard ellipsoid
fluids have revolved around Onsager’s theory,19 which is a
simple form of density functional theory. The free energy is
expressed as a contribution from the entropy of mixing of
differently oriented particles~treated as different species!
plus a virial expansion in the density,r5N/V. The virial
coefficients,B̄n , arise from excluded volume interactions
which are orientation dependent. Both the entropy and
excluded-volume terms are functionals of the orientational
distribution function~ODF! f (e) wheree[wu is a unit vec-
tor, or equivalently a pair of polar angles, defining the mo-
lecular orientation. The free energy is minimized with re-
spect tof (e), and all of the thermodynamic quantities and
phase behavior follow. Competition between the orienta-
tional entropy and the excluded volume interactions gives
rise to the I-N phase transition. In the original Onsager
theory, the virial expansion is truncated at theB̄2 term, and
the method owes its success to the rapid convergence

B̄n /B̄2
n21→0 at asymptotically large elongations.19 At inter-

mediate elongations, however, the virial expansion is slow to
converge and so the higher virial coefficients must be taken
into account. This can be done directly,20,21 by resummation
theories such as the Barboy and Gelbarty-expan-
sion,20–24 or by renormalized two-particle theories such as
that due to Parsons25 and Lee.26,27 In this paper we deal with
this last formulation.

The input for the Onsager and Parsons–Lee theories is
B̄2 expressed as an integral involvingf (e) and the
orientation-dependent second virial coefficientB2(e–e8). In
the past, the latter has been represented as an expansion in
Legendre polynomials.21,26 This expansion converges more
slowly asx is increased. Consequently, when studying ellip-
soids of high elongation, many expansion coefficients are
needed to accurately representB2(e–e8), and the high-order

expansion coefficients become difficult to determine accu-
rately. The truncation error for a given number of terms in
the expansion may be gauged by calculatingB̄2 in a system
of aligned ellipsoids.21 In the present work we avoid these
problems by evaluatingB2(e•e8) essentially exactly; this en-
ables us to investigate the predictions of the Onsager and
Parsons–Lee theories for large elongations.

This paper is organized as follows. Section II covers the
Onsager theory and its refinement by Parsons and Lee; in
Sec. II C we present the method used to compute orientation-
dependent second virial coefficients. Section III sets out the
simulation techniques used in this study, especially the for-
mulation of the governing differential equation for the
Gibbs–Duhem integration technique, and the scheme
adopted for solving this equation, in Sec. III B. In Sec. IV we
describe the computational details of the simulations we
have conducted both to determine coexistence points at spe-
cific values of elongation and to carry through Gibbs–
Duhem integration along the coexistence line. The results are
presented in Sec. V, and Sec. VI concludes the paper.

II. THEORY

The Helmholtz free energyF of N hard elongated par-
ticles in a volumeV, with number densityr5N/V, consid-
ered as a mixture of species having different orientations, is

bF

N
5 ln rL3211E de f ~e!ln 4p f ~e!1 (

n52

`
B̄n

n21
rn21.

~1!

Hereb51/kBT. The first term on the right is the ideal con-
tribution to the free energy;L is the de Broglie thermal
wavelength. The second term is the contribution from the
orientational entropy of mixing, which depends onf (e), the
orientational distribution function~ODF!, where e is the
principal molecular axis unit vector.f (e) satisfies the nor-
malization condition

E de f ~e!51, ~2!

thus in the isotropic phasef (e)51/4p and the orientational
entropy is zero. The terms inB̄nr

n21 represent the excluded
volume interactions betweenn particles. For example,B̄2r
represents pairwise interactions, andB̄2 is itself a functional
of the ODF

B̄25E de de8 f ~e! f ~e8!B2~e–e8!. ~3!

B2(e–e8) is the orientation-dependent second virial coeffi-
cient and is equal to half the excluded volume of two non-
spherical hard bodies with orientation vectorse and e8.
Evaluating this quantity is the subject of Sec. II C.

A. Onsager theory

The Onsager theory of orientational ordering in hard
elongated particles19 involves minimising the free energy
functionalF, truncated atB̄2, with respect to variations of
the ODF. The relevant expressions are

2838 Camp et al.: The isotropic–nematic phase transition

J. Chem. Phys., Vol. 105, No. 7, 15 August 1996

Downloaded¬17¬May¬2005¬to¬128.205.114.91.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



bF

N
5 ln rL3211E de f ~e!ln 4p f ~e!1B̄2r, ~4a!

bP/r511B̄2r, ~4b!

bm5 ln rL31E de f ~e!ln 4p f ~e!12B̄2r , ~4c!

f ~e!5C1 expH 22rE de8 f ~e8!B2~e–e8!J . ~4d!

Equation~4d! results from functional differentiation of Eq.
~4a! subject to the normalization condition;C1 is the normal-
ization constant. This is a self-consistent equation forf (e),
which is solved numerically, given a form forB2(e–e8). Be-
low the critical density there is only one solution, which
corresponds to the isotropic phase, i.e.f (e)51/4p. Above
the transition density, a nematic solution also exists. The
order parameter,S, is given by

S5^ 3
2 cos

2u2 1
2&5E de f ~e!~ 3

2 cos
2u2 1

2!, ~5!

whereu is the polar angle between the director and a particle
orientation vector. At phase coexistence the pressures and
chemical potentials in the two phases are equal, giving two
simultaneous equations to be solved forr iso and rnem, the
isotropic and nematic coexistence densities, respectively.

B. Parsons–Lee theory

Improving the original theory, by direct inclusion of
higher virial coefficients, is possible but complicated.20,21

The theory may be improved in a more tractable way by
resumming higher virial coefficients in ay-expansion.20–24

An alternative approach, which we adopt here, is due to
Parsons25 and Lee.26,27 The Carnahan–Starling expression
for the free-energy of hard spheres is applied to the system of
interest, using the~orientationally averaged! second virial
coefficient of the ellipsoids as a scaling factor. This approach
has been shown to be surprisingly successful at predicting
the I-N transition parameters, forx53.17 Like the
y-expansion, it clearly incorporates some many-body effects
in an average way, while requiring only explicit knowledge
of two-body excluded volumes, which makes it extremely
easy to use. The relevant expressions are

bF

N
5 ln rL3211E de f ~e!ln 4p f ~e!

1~B̄2/4v0!
f~423f!

~12f!2
, ~6a!

bP

r
5

~11@~B̄2 /v0!23#f1@32~B̄2/2v0!#f
22f3!

~12f!3
,

~6b!

bm5 ln rL31E de f ~e!ln 4p f ~e!

1~B̄2/4v0!
8f29f213f3

~12f!3
, ~6c!

f ~e!5C1 expH 2
2f~423f!

~12f!2
E de8 f ~e8!

B2~e–e8!

4v0
J .
~6d!

In the above,f5rv0 is the packing fraction. For hard
spheres, the orientational variables disappear,B2(e–e8)5B̄2

54v0, and the usual Carnahan–Starling equations28 are re-
covered.

The method of solution of the above equations is exactly
the same as described in the previous section. Both the origi-
nal Onsager theory and the Parsons–Lee modification rely
on accurate calculation of the pair-excluded volume
B2(e–e8). We turn to this now.

C. Calculation of B2(e–e8)

For hard potentials the second virial coefficient
B2(e–e8) is simply half of the excluded volume of the ori-
ented particles. Previous attempts to describe the dependence
of the overlap volume on the relative orientation have em-
ployed expansions in an orthogonal rotational basis.21,29,30

For our case, this takes the form

B2~e•e8!5B2,01 (
n51

`

B2,nPn~e•e8!, ~7!

where the expansion coefficientsB2,n are given in Ref. 21
andPn is thenth Legendre polynomial. For axiosymmetric
(D`h) particles this expansion can be simplified since only
even-n terms need to be included.

This approach is particularly convenient if it is applied
in an Onsager-type treatment that has the ODF expressed in
terms of the same basis set. However, the accuracy of the
approach deteriorates as one considers ellipsoids of increas-
ingly long aspect ratio. Comparison ofB̄2 for perfectly
aligned ellipsoids21 gives an idea of the magnitude of this
error. B̄ 2

i 5B2
i [B2(e–e851) should equal the hard sphere

second virial coefficient, i.e.,B2
i /4v051. In Table I we

presentB2
i /4v0 for ellipsoids of elongationx55 to x520 as

calculated with terms up to 10th order in the Legendre poly-
nomial expansion. As expected, the ratio rises from unity as
the elongation is increased: the truncation error is less than
4% for 1<x<10, but rises to 21% forx520. Thus, we
expect the predictions of Onsager and Parsons theories to be
subject to error at higher elongations, unless a different ap-
proach is used.

To study the approach to the Onsager limit it is neces-
sary to have a means for computing the overlap volume of
two oriented convex bodies of arbitrarily large aspect ratio.
Expressions of this sort are available for very few models:
circular cylinders, spherocylinders,19 and ~more generally!
spheroplatelets.31,32 The result for spheroplatelets is particu-
larly useful in that it may be applied to biaxial and noniden-
tical particles. We present in this section an analogous algo-
rithm for computing the overlap volume of two arbitrary
ellipsoids. Although our interest in the present study is with
identical, uniaxial ellipsoids, the method described in this
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section is just as easily applied to two arbitrary, non-
identical, biaxial ellipsoids, and accordingly we adopt a more
general notation.

The approach we adopt is simple. We take one ellipsoid
as defining the reference frame for our manipulations, and
we scale all three coordinate axes independently to take the
reference ellipsoid into a sphere of unit radius. This takes the
oriented ellipsoid into a new, biaxial ellipsoid, with dimen-
sions that will depend upon its orientation as well as its
original, unscaled dimensions. The problem then becomes
one of determining the overlap volume of a sphere and a
biaxial ellipsoid, which is equivalent to determining the vol-
ume of the parallel body of the biaxial ellipsoid. Standard
formulas may be applied, and the resulting overlap volume
rescaled to recover the overlap volume of interest. Details
follow.

Consider two ellipsoids of semiaxes (a1 ,b1 ,c1) and
(a2 ,b2 ,c2), respectively. We take ellipsoid 1 as defining the
space-fixed frame, and we use the Euler anglesV5wuc33 to
define the orientation of ellipsoid 2 with respect to it. Thus
ellipsoid 2 defines the surface

~r2r2!
TA2~r2r2!51, ~8!

wherer2 is the coordinate of the center of the ellipsoid.A2 is
the matrix of the quadratic form for the oriented ellipsoid; it
may be expressed

A25RD2R
T, ~9!

whereD2 is the diagonal matrix diag(a2
22 ,b2

22 ,c2
22) andR

is the rotation matrix corresponding to the Euler angles
wuc. The coordinate scaling that takes ellipsoid 1 into a unit
sphere takes ellipsoid 2 into a form characterized by the ma-
trix Ã2

Ã25SA2S, ~10!

whereS is the scaling matrix diag(a1 ,b1 ,c1). The excluded
volume of a sphere and the ellipsoid defined byÃ2 can be
expressed in terms of the fundamental measures of the
ellipsoid34

Ṽexcl5Ṽ21S̃2r1M̃2r
21

4p

3
r 3, ~11!

where r51 for the unit sphere. HereṼ2, S̃2, and M̃2 are,
respectively, the volume, surface area, and mean radius of
curvature of the scaled ellipsoid. These may be evaluated in
terms of its semiaxes (ã2 ,b̃2 ,c̃2), defined such that
ã2<b̃2< c̃2. If la>lb>lc are the eigenvalues ofÃ2, then

~ ã2 ,b̃2 ,c̃2!5~la
21/2,lb

21/2,lc
21/2!. ~12!

The volume is easy

Ṽ25
4p

3
ã2b̃2c̃2 . ~13!

The surface area is expressed in terms of elliptic
integrals.35,36 It is useful first to define the eccentricities

TABLE I. Properties predicted by the Parsons theory~P! and the Onsager theory~O! for the isotropic–nematic phase transition in hard uniaxial ellipsoid
fluids. ‘‘a’’ refers to the exact expression forB2(e–e8) for which B2

i /4v051, ‘‘b’’ refers to the expansion.

bP r iso /rcp rnem/rcp S

B2
i /4v0x P O P O P O P O

5.0 a 8.3904 9.2490 0.5242 0.9957 0.5472 1.0703 0.6133 0.6029
b 8.3977 0.5244 0.5478 0.6181 1.0011
6.0 a 6.0090 6.5707 0.4554 0.7770 0.4828 0.8484 0.6424 0.6307
b 6.0168 0.4556 0.4836 0.6485 1.0040
7.0 a 4.6632 5.0652 0.4029 0.6378 0.4335 0.7075 0.6652 0.6526
b 4.6712 0.4033 0.4346 0.6723 1.0090
8.0 a 3.8078 4.1122 0.3617 0.5413 0.3944 0.6082 0.6834 0.6702
b 3.8137 0.3619 0.3956 0.6910 1.0157
9.0 a 3.2184 3.4586 0.3283 0.4706 0.3624 0.5346 0.6978 0.6845
b 3.2238 0.3286 0.3637 0.7064 1.0244
10.0 a 2.7889 2.9837 0.3007 0.4164 0.3355 0.4776 0.7096 0.6963
b 2.7931 0.3009 0.3369 0.7188 1.0348
12.5 a 2.0963 2.2226 0.2489 0.3238 0.2840 0.3786 0.7310 0.7180
15.0 a 1.6838 1.7728 0.2126 0.2652 0.2467 0.3146 0.7451 0.7326
b 1.6851 0.2127 0.2482 0.7563 1.1090
20.0 a 1.2137 1.2651 0.1649 0.1951 0.1959 0.2359 0.7618 0.7507
b 1.2139 0.1650 0.1976 0.7743 1.2104
30.0 a 0.7841 0.8078 0.1142 0.1280 0.1391 0.1578 0.7765 0.7678
50.0 a 0.4622 0.4711 0.0709 0.0760 0.0881 0.0952 0.7859 0.7800
100.0 a 0.2292 0.2315 0.0365 0.0378 0.0460 0.0478 0.7907 0.7873
200.0 a 0.1144 0.1150 0.0185 0.0189 0.0235 0.0240 0.7921 0.7904
300.0 a 0.0763 0.0765 0.0124 0.0126 0.0158 0.0160 0.7923 0.7912
500.0 a 0.0458 0.0458 0.0075 0.0075 0.0095 0.0096 0.7925 0.7918
700.0 a 0.0327 0.0327 0.0054 0.0054 0.0068 0.0069 0.7925 0.7920
1000.0 a 0.0229 0.0229 0.0038 0.0038 0.0048 0.0048 0.7925 0.7922
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eb5S b̃2
ã2

D 221, ec5S c̃2
ã2

D 221,

then

S̃252pã2b̃2S ã2
b̃2

1ec
21/2F~wum!1ec

1/2E~wum!D , ~14!

wherem5( c̃2 /b̃2)
2eb /ec , w5tan21(ec

1/2), andF andE are
elliptic integrals of the first and second kind, respectively

F~wum!5E
0

w

du~12m sin2 u!21/2,

E~wum!5E
0

w

du~12m sin2 u!1/2.

The mean radius of curvature is given as the integral of the
support function over all directions;34 using Tjipto-Margo
and Evans’ expression for the support function of a biaxial
ellipsoid,29 M̃2 is

M̃25ã2E
0

2p

dwE
0

p

sin u du~11eb sin
2 w sin2u

1ec cos
2u!1/2. ~15!

If the integral overu is taken analytically,M̃2 may be evalu-
ated by a one-dimensional numerical quadrature

M̃252ã2E
0

p

dwF ~P1Q!1/21
P

Q1/2ln
Q1Q1/2~P1Q!1/2

~PQ!1/2 G ,
~16!

whereP(w)511eb sin
2w andQ(w)5ec2eb sin

2w, and we
have exploited the symmetry of the integrand to halve the
region of integration.

The excluded volume of the two original ellipsoids is
recovered by removing the scaling fromṼexcl

Vexcl~V!5a1b1c1Ṽexcl~V! ~17!

andB2 is obtained directly:B25
1
2Vexcl. This result~i.e., the

uniaxial special caseV→e[wu, b15c1, b25c2) may be
inserted into Eq.~3! for B̄2 given an orientational distribution
function f (e). We note that theisotropically averaged ex-
cluded volume is expressed directly in terms of the funda-
mental measures of the two ellipsoids, as given by Kihara34

B̄2
iso5

1

2 SV11V21
1

4p
~M1S21M2S1! D . ~18!

This algorithm is easily programmed as a subroutine for
use in the numerical calculation of the Onsager/Parsons treat-
ments of the isotropic–nematic transition. It applies gener-
ally to all biaxial ellipsoids, and works well even for the
most extreme shapes. No doubt certain efficiencies could be
introduced in the development, and with some effort the re-
sults might be cast in a more explicit form. However, this
algorithm proved sufficiently rapid for our purposes. Our nu-
merical calculations are described in the following section.

D. Numerical details

In this study the Onsager and Parsons theories were each
carried out for hard ellipsoids of revolution with 5<x
<1000, thus approaching the Onsager limit.

The integral equations for the orientation distribution
@Eqs. ~4d! and ~6d! for the Onsager and Parsons methods,
respectively# were solved numerically. The ODF was repre-
sented by n points taken uniformly over the~one-
dimensional! u-range ofe5uw; it is independent ofw. Tak-
ing an initial guessf (u,w)53 cos2u/4p, Eq. ~4d! or ~6d!
was solved for then discretization values by successive sub-
stitution. The integrals in these equations were evaluated us-
ing Simpson’s three-eighths rule, and the orientation-
dependentB2 was computed as described in the previous
section. Most calculations were performed takingn540; a
few checks made usingn5100 showed no significant change
in the results. Convergence of the ODF was taken when no
discretization value changed by more than 1028 over succes-
sive iterations.

For comparison, we also used the expansion formulation
of trial ODFs with up to 10th-order Legendre polynomials.
The initial trial ODF was that in the perfectly aligned limit.
The self-consistency equations were iterated until the nor-
malization constant of the ODF had converged to within
1026.

The coexistence densities were computed as follows. At
a trial value of the nematic density, the ODF was calculated,
and B̄2 for the nematic phase was computed from Eq.~3!
with Simpson’s-rule integration. The corresponding nematic
pressure and chemical potential were computed using the
appropriate equations@Eqs. ~4b! and ~4c!, or ~6b! and ~6c!#
with the nematic ODF andB̄2. Two isotropic densities cor-
responding to these values ofP andm were calculated from
the same equations, withf (e)51/4p and the isotropically
averagedB̄2 given by Eq. ~18!. For coexistence, the two
isotropic densities should be equal. The trial nematic density
was updated with a bisection method until the difference
between the two isotropic densities was less than 1026.

III. SIMULATION TECHNIQUES

In this section we describe some features of the simula-
tion techniques employed in this study. The Gibbs ensemble
simulations were carried out in a standard fashion, and we
simply give the relevant details in Sec. IV. To calculate the
chemical potential at designated state points, we used either
direct test particle insertion, or a version of the force-balance
approach due to Attard, and this latter technique is described
in Sec. III. Following this, and fitting of the equation of state
in the neighborhood of interest, the chemical potential was
evaluated using the expression

m~P!5m01E
P0

P dP

r
, ~19!

wherem0 is the chemical potential calculated as just men-
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tioned at a reference pressureP0. The coexistence conditions
were then solved forriso andrnem, the isotropic and nematic
coexistence densities, respectively,

Piso~riso!5Pnem~rnem!, ~20!

miso~riso!5mnem~rnem!. ~21!

In this way we located the transition point for the chosen
elongation, and this constituted the starting point for the
Gibbs–Duhem runs. Describing the formulation and imple-
mentation of the Gibbs–Duhem technique for these systems
is the main objective in Secs. III B–III E.

A. Force-balance method

The force-balance technique was introduced by Attard5

as a robust way of measuring the chemical potential of fluids.
One of theN particles in a conventional MC simulation is
designated the ‘‘cavity,’’ with a variable size characterized
by a scaling parameterk which takes values 0<k<1. At the
lower limit, k50 corresponds to a point particle: the chemi-
cal potential of this species is exactly calculable. At the up-
per limit, k51 corresponds to a full-sized particle; a set of
~typically 10–20! intermediate values ofk is defined at the
start of the simulation. During the simulation, standard
Monte Carlo moves are supplemented by attempted transi-
tions betweenk-states of the cavity particle. A probability
histogramP~k! is constructed ofk-state populations during
the simulation. This can be used to calculate the free energy
F~k! for each species, and in particular fork51, relative to
point particles, and hence the chemical potential. To ensure
adequate sampling of all thek values, a weighting function
W~k! is introduced into the acceptance/rejection criterion for
k transitions, and a corresponding correction factor intro-
duced in the calculation of chemical potential. Scaled-
particle theory may be used to give a reasonable first esti-
mate of the weighting function; full details are provided by
Attard.5

We have adopted this scheme, and improved its effi-
ciency in the following ways. First, we progressively refine
the weighting function as originally envisaged by Attard,5 by
conducting a series of preliminary simulations and using the
‘‘entropy sampling’’ prescription of Lee.37 In each simula-
tion, conducted with weighting functionW~k!, we accumu-
late an un-normalized probability histogramP8~k!, i.e., the
number of occurrences of eachk-state. Then, for the next
simulation run,W~k! is replaced byW~k!2kBT ln P8(k)
whereverP8~k! is nonzero, otherwise it is left unaltered. Af-
ter a few iterations, the weighting function generates essen-
tially uniform sampling over the range of cavity particle
sizes, and ultimately gives a good estimate of the chemical
potential.

Second, we attempt to improve the sampling of cavity
particle positions, to avoid the danger of the cavity remain-
ing essentially static, and interacting with only a localized
region of the simulated fluid. Every MC sweep consists of
conventional moves of cavity and normal particles, plus an
attempted exchange of the cavity position with a randomly
selected full particle, and in addition an attempt to relocate it

to a randomly selected position in the box. These moves are
unbiased: They are rejected if they incur an overlap, and
accepted otherwise. The rationale is that the particle ex-
changes will be accepted frequently whenk is high, while
the random relocations will succeed whenk is low. Between
them, these moves ensure that the cavity particle moves rap-
idly around the entire sample.

B. Gibbs–Duhem integration

Having established the location of the I-N transition for
a particular ellipsoid elongationx, we use the Gibbs–Duhem
method to move along the coexistence line in theP–x dia-
gram. In other words, we seek a Clapeyron-type differential
equation for the coexistence pressure, as a function of ellip-
soid elongation.

Consider a one-component system with two coexisting
phases, denoted bya andg, having equalTPm. An infini-
tesimal change in any of the thermodynamic variables, main-
taining the coexistence conditions, must result in equal
changes of the chemical potentials in both phases

dma5dmg . ~22!

These total derivatives can be written in terms of partial de-
rivatives with respect to the thermodynamic variables. We
shall chooseP and an as-yet-unspecified variable,l, which
characterizes the particle anisotropy.

dm5S ]m

]l D
T,P

dl1S ]m

]PD
T,l

dP5G dl1v dP, ~23!

where we use the thermodynamic relations (]m/]P)T,l
51/r5v, the volume per particle, and (]m/]l)T,P[G, de-
fining a thermodynamic variableG conjugate tol. Equation
~22! becomes

Ga dl1va dP5Gg dl1vg dP, ~24!

from which we obtain a Clapeyron-type equation,

dP

dl
52

DG

Dv
, ~25!

where

DG5Gg2Ga, ~26a!

Dv5vg2va5
1

rg
2
1

ra
. ~26b!

Equation ~25! represents a first-order differential equation
which describes how the pressure of two coexisting phases
changes with the thermodynamic variable,l. As noted in
Refs. 8 and 9, if Eq.~25! is written

d ln P

dl
52

DG

P Dv
, ~27!

the right-hand side~integrand! is a smoother function than
that of Eq.~25!. All numerical integration techniques benefit
from a slowly varying integrand, and so this is the governing
differential equation we use here.
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C. Calculation of G: The general case

To calculateG we must relate it to a mechanical quantity
measurable in a simulation. First, we note thatG5mN,
whereG is the Gibbs free energy andN is the number of
particles, and so

G5
1

N S ]G

]l D
T,P

. ~28!

Next, we expressG in terms of the isothermal–isobaric par-
tition function,D(N,P,T;l), for a particular system speci-
fied by the anisotropy parameter,l,

G52kBT ln D~N,P,T;l!, ~29!

with D(N,P,T;l) given by

D~N,P,T;l!5E dV exp$2bPV%Q~N,V,T;l!

5
1

L3NN! E dV exp$2bPV%

3E drNexp$2bU~rN;l!%, ~30!

whereb51/kBT. In the equations aboveQ(N,V,T;l) is the
canonical partition function for a system with anisotropy pa-
rameterl, L is the de Broglie thermal wavelength,rN is the
set of configuration space coordinates andU(rN) is the con-
figurational energy. Note that the prefactor arising from ki-
netic part of the Hamiltonian is independent ofl. We can
now recast Eq.~28! in terms ofD(N,P,T;l)

G52 lim
dl→0

kBT

Ndl

*dV exp$2bPV%*drN exp$2bU~rN;l1dl!%

*dV exp$2bPV%*drN exp$2bU~rN;l!%

52 lim
dl→0

kBT

Ndl

*dV exp$2bPV%*drN exp$2b@U~r N;l!1DU#%

*dV exp$2bPV%*drN exp$2bU~r N;l!%

52 lim
dl→0

kBT

Ndl
ln^exp$2bDU%&, ~31!

where DU is the change in configurational energy upon
changingl to l1dl.

D. Calculation of G: The hard ellipsoid fluid

We now turn to the calculation ofG in a fluid of hard
uniaxial ellipsoids. Here we use the method pioneered by
Eppenga and Frenkel,38 and Perram and Wertheim,39,40 to
measure the pressure in a constant volume simulation.
Throughout our simulations we choose the semiaxesa andb
such that 8ab251. The molecular volume of the ellipsoid,
v0, is therefore equal to that of a hard sphere with unit di-
ameter (v05p/6!, and the close-packed densityrcp5A2 ir-
respective of elongation. The molecular volume is conserved
when altering the elongation, and so asa, say, increasesb
must decrease. We must take into account both of these
changes in the calculation ofG. In practice we chose to alter
l5ln b as the thermodynamic variable, since this simplifies
the computation.G is calculated in terms of partial deriva-
tives;

G5S ]m

] ln bD
P,v0

5S ]m

] ln bD
P,a

1S ]m

] ln aD
P,b

S d ln a

d ln bD5Gb22Ga, ~32!

where

Ga5S ]m

] ln aD
P,b

Gb5S ]m

] ln bD
P,a

. ~33!

To calculateGb ~and similarlyGa), we note that for hard
particle systems, Eq.~31! is equivalent to

Gb52 lim
dl→0

kBT

Ndl
ln Pbaccept, l[ ln b, with a fixed.

~34!

Pbaccept is the probability of accepting the ghost change
ln b→ln b1dl, holding a fixed, without overlap between
any pair of particles.Pbacceptcan be expanded in terms of the
probability of overlap between a pair of particles,i and j ,
denoted byPb,i joverlap:

Pbaccept5)
i. j

~12Pb,i joverlap!'12(
i. j
Pb,i joverlap. ~35!

We now identifyPb,i joverlap with the ensemble average of the
number of overlaps upon the particle scaling
ln b→ln b1dl

Pb,i joverlap5
^Nb

overlap&
1
2N~N21!

. ~36!

Equation~35! can now be expressed in terms of an ensemble
average
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Pbaccept512(
i. j

^Nb
overlap&

1
2N~N21!

512^Nb
overlap&. ~37!

Using the fact thatdl should be small, we can substitute Eq.
~37! into Eq. ~34! and expanding the logarithm to lowest
order gives,

Gb5 lim
dl→0

kBT
^Nb

overlap&
Ndl

. ~38!

The calculation ofGb in a simulation is thus carried out as
follows. The minor semiaxis,b, is scaled by a factor of
(11dl), wheredl is small and positive, witha held con-
stant. The number of pair overlaps,Nb

overlap is then deter-
mined; b is then returned to its appropriate value for the
current ellipsoid anisotropy.a is scaled in a similar fashion
and the number of pair overlaps,Na

overlap, counted. The in-
stantaneous value ofG is then calculated and accumulated as
a simulation average,

G5
kBT

Ndl
^Nb

overlap22Na
overlap&, ~39!

which is equivalent to Eq.~32!.

E. The integrator

Starting from a simulation of both phases at the known
coexistence pressureP for a given elongation parameterl,
we wish to move to a new transition pressureP8 correspond-
ing to new elongationl1Dl, whereDl is the chosen step
size in l5 ln b. Having evaluatedG, and the volume per
particlev51/r, in both simulation boxes at pressureP, we
evaluate the right-hand side~rhs! of Eq. ~27!, which we de-
noteF. There are many numerical techniques available for
solving first-order differential equations. In this work we em-
ploy a straightforward trapezoid predictor–corrector method.
The new coexistence pressure,P8 is predicted by

P85P exp$FDl%. ~40!

Next, a corrector stage is performed where the running aver-
age of the rhs of Eq.~27!, denoted byF8, is used to correct
the predicted pressure

P85P exp$ 1
2Dl~F1F8!%. ~41!

To do this, a simulation is started at a pressureP8 and a
running average ofF8 is accumulated over a number of MC
sweeps, after which the pressure is corrected as in Eq.~41!.
This process is repeated until successive corrected pressures
converge within a given tolerance. Note that the valuesP
andF do not change during the course of a simulation: They
are the values for the previous elongation. A production run
at this corrected pressure provides a new integrand by which
the next coexistence pressure is predicted.

IV. SIMULATION RUNS

We describe here the calculations of chemical potentials
and the Gibbs ensemble simulations, used to provide starting
points for the Gibbs–Duhem integrations. Then we give full

details of the Gibbs–Duhem integrations themselves. Except
as outlined above, standard hard-particle Monte Carlo and
molecular dynamics simulation techniques were used.17,41

Throughout this work, truncated octahedral periodic bound-
ary conditions were employed, and we used both the equiva-
lent ellipsoid overlap criteria due to Perram and
Wertheim39,40 and Vieillard-Baron.42,43

A. Starting points

We have determined the chemical potential in the isotro-
pic and nematic phases using the force-balance method of
Attard5 ~see Sec. III A! for x55, and by direct test particle
insertion forx520. In each case, equation-of-state data in
both phases were used to locate the coexistence points by
thermodynamic integration. The transition atx520 was also
located directly by Gibbs ensemble simulation.

The chemical potential forx55 was determined at
r/rcp50.45 ~isotropic phase! and r/rcp50.55 ~nematic
phase!. We used constant-NVT MC with N5216 particles;
the ‘‘cavity’’ particle was allowed 14 values of scaling pa-
rameterk between a point particle (k50) and full size
(k51). Translational and rotational displacements were
chosen so as to give an acceptance ratio in the range 40%–
50%. The biasing function fork moves was estimated ini-
tially by an equilibration run of 125 000 MC sweeps, and
was refined throughout five production runs each consisting
of 250 000 MC sweeps. The results for the chemical poten-
tial are shown in Table II.

Accurate equation-of-state data for thex55 system have
been reported previously18,44 but extra data close to the I-N
transition were needed. We have carried out molecular dy-
namics~MD! simulations atx55 at many state points in and
around the I-N coexistence region, 0.45<r/rcp<0.55. We
used a system sizeN5216, and run lengths in the range 1–3
3105 collisions per particle; close to the transition it was
essential to allow such long times for the system to equili-
brate. The results are shown in Table III and Fig. 1. Also
shown in the table is the nematic order parameter,S, defined
in Eq. ~5!, and calculated from the highest eigenvalue of the
second-rank order tensor.38,45 For macroscopic systems, the
isotropic phase is characterised byS50, and the perfectly

TABLE II. Chemical potentials for various hard ellipsoid fluids. The abbre-
viations are as follows: FB~force-balance Monte Carlo!, TI ~thermodynamic
integration!, PI ~particle insertion!, GS ~Gibbs simulation!.

x r/rcp m Method

5 0.450 11.35 FB
5 0.550 15.33 FB
5 0.505 14.40 TI
5 0.531 14.40 TI

20 0.100 2.61 PI
20 0.213 6.60 PI
20 0.153 6.06 TI
20 0.184 6.06 TI
20 0.153 6.04 GS
20 0.183 6.04 GS
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aligned nematic phase byS51. Finite-size effects are appar-
ent in the order parameters, however, in the sense that even
in the isotropic phase they take valuesO(N21/2).

After fitting the equation of state, the values ofT and
P satisfying the thermodynamic coexistence conditions were
calculated. I-N coexistence data for thex55 hard ellipsoid
fluid are presented in Tables II and VI.

Equation-of-state data for thex520 system were ob-
tained by constant-volume and constant-pressure MC simu-
lations ofN5500 particles and are presented in Table IV and
Fig. 2. We used approximately 50 000 MC sweeps at each
state point. The chemical potential was determined using Wi-
dom test particle insertion3 using 500 attempts per MC
sweep. The results are shown in Table II.

At this point we note that the system sizes were chosen
to avoid interactions between periodic images. Such interac-
tions are avoided if 2a,r ins, wherer ins is the radius of the

inscribed sphere in the truncated octahedral simulation cell.
This is given by

r ins5A3L/4, ~42!

whereL is the length of the cube containing the truncated
octahedral simulation cell. As can be seen from Table V, the
system size for thex520 simulations was too small to avoid
periodic image interactions for the most unfavourable orien-
tations of particles. However, the results are in good agree-
ment with Gibbs simulations carried out with a larger sys-
tem, which we shall now describe, and we believe that the
system size effects are small.

In the x520 system, the I-N transition occurs at suffi-
ciently low density for the Gibbs ensemble method6,7 to be
practicable. The simulation was started withN51000 par-
ticles in each box, and the box size was large enough to
completely rule out interactions between periodic images

TABLE III. Equation of state data for thex55 hard ellipsoid fluid from
MD and MC simulation (N5216). We give the densityr as a fraction of
close-packed density, pressureP and nematic order parameterS. Results
marked with an asterisk~* ! are from MC simulation~Refs. 18 and 44!.
Estimated errors in the last digit are in parentheses.

r/rcp P S r/rcp P S

*0.450 5.34~2! 0.13~1! 0.510 7.08~2! 0.505~8!
*0.475 6.22~3! 0.16~1! 0.511 7.10~2! 0.517~8!
0.480 6.427~6! 0.175~4! 0.512 7.08~2! 0.541~6!
0.484 6.559~8! 0.195~7! 0.513 7.11~2! 0.545~8!
0.488 6.69~1! 0.221~7! 0.514 7.10~2! 0.565~7!
0.492 6.85~1! 0.221~9! 0.515 7.18~2! 0.549~7!
0.496 6.90~2! 0.30~1! 0.516 7.13~1! 0.581~5!
0.500 7.02~1! 0.330~9! 0.518 7.17~1! 0.598~4!
0.502 7.03~2! 0.37~1! 0.520 7.22~1! 0.609~4!
0.503 7.01~2! 0.40~1! 0.522 7.23~1! 0.632~3!
0.504 7.05~2! 0.40~1! *0.525 7.36~9! 0.63~3!
0.505 7.06~2! 0.42~1! 0.530 7.44~3! 0.67~1!
0.506 7.05~2! 0.44~1! 0.535 7.58~2! 0.688~7!
0.507 7.06~2! 0.46~1! 0.540 7.74~3! 0.706~7!
0.508 7.08~2! 0.470~9! 0.545 7.88~4! 0.73~1!
0.509 7.06~2! 0.499~7! *0.550 8.14~7! 0.70~4!

TABLE VI. Coexistence data for the isotropic–nematic phase transition in hard ellipsoids at various elongations. All results are obtained by Gibbs–Duhem
integration except for †~thermodynamic integration! and ‡ ~Gibbs simulation!. Estimated errors in the last digit are in parentheses.

x N P G iso r iso /rcp m iso Gnem rnem/rcp mnem S

5.000† 216 7.40 210.5~4! 0.507~5! 14.40 28.3~6! 0.529~6! 14.40 0.66
5.743 216 5.84 210.7~5! 0.454~4! 12.57 28.1~5! 0.482~9! 12.59 0.66
6.597 216 4.59 210.8~3! 0.400~3! 10.98 28.1~6! 0.433~6! 11.02 0.65
7.579 500 3.70 210.2~5! 0.361~5! 9.81 27.5~4! 0.391~4! 9.86 0.69
8.706 500 3.03 210.1~5! 0.321~5! 8.87 27.7~4! 0.350~5! 8.93 0.71
10.00 500 2.50 29.9~3! 0.283~3! 8.09 27.2~2! 0.321~4! 8.17 0.69
10.00 1000 2.48 210.0~3! 0.284~2! 8.38 27.2~3! 0.321~3! 8.33 0.75
11.49 1000 1.93 29.6~2! 0.242~1! 7.34 27.9~4! 0.274~2! 7.35 0.69
13.20 1000 1.71 29.9~3! 0.219~1! 7.10 27.1~2! 0.256~4! 7.09 0.74
15.16 1000 1.47 29.8~2! 0.194~1! 6.75 27.1~2! 0.230~1! 6.74 0.75
17.41 1000 1.28 29.4~3! 0.167~2! 6.44 27.1~2! 0.194~2! 6.42 0.73
20.00† 500 1.10 29.6~1! 0.153~1! 6.06 27.2~1! 0.184~1! 6.06
20.00‡ 1000 0.153~1! 6.04~4! 0.183~1! 6.04~4! 0.75

FIG. 1. Equation of state data for thex55 hard ellipsoid fluid from MD
simulation (N5216) ~points!. Coexistence data from thermodynamic inte-
gration are indicated by the dotted lines.
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~see Table V!. We carried out an equilibration run of 5000
MC sweeps and a production run of another 5000 MC
sweeps over which the coexistence densities were averaged.
Each MC sweep consisted of an attempt to translate and
rotate each particle in each box~displacement parameters
chosen to give a 40%–50% acceptance ratio!, a conservative
volume exchange between the boxes, and 50 000 attempts to
transfer particles in a random direction between the boxes.
With this number of transfer attempts, 1%–2% of the total
number of particles were transferred, on average, per MC
sweep. In Fig. 2, density histograms from Gibbs simulation
are superimposed on the equation of state, showing good
agreement with the coexistence data from thermodynamic
integration. The chemical potential was calculated within the
Gibbs ensemble using the expression given by Smit and
Frenkel.46 The results are shown in Table II. I-N coexistence
data for thex520 hard ellipsoid fluid are presented in Table
VI.

B. Gibbs–Duhem runs

Gibbs–Duhem simulations were conducted, integrating
along the isotropic–nematic coexistence line fromx55 to
x510 and fromx520 tox510, using starting values deter-
mined as described above.

Constant-pressure MC simulations were performed in
each phase simultaneously with system sizes between
N5216 andN51000, depending on elongation~see below!.
Each MC sweep consisted of an attempted translation and
rotation per particle~displacement parameters chosen to give
a 40%–50% acceptance ratio!, and an attempted volume
change. To calculateG, every 10 MC sweeps the ellipsoid
dimensions were scaled and the number of resulting overlaps
counted, as outlined in Sec. III C, withdl50.005. This
choice is small enough to give the asymptotic behavior in
Eq. ~38! but large enough to result in a statistically signifi-
cant number of overlaps. In the predictor–corrector stageG
was accumulated as a running average, and the pressure was

TABLE IV. Equation of state data for thex520 hard ellipsoid fluid from MC simulation (N5500). We give
the densityr as a fraction of close-packed density, pressureP and nematic order parameterS. V denotes
constant-volume MC simulations, P denotes constant-pressure MC simulations.

r/rcp P S Ens. r/rcp P S Ens.

0.1000 0.482 0.040 V 0.1700 1.085 0.665 V
0.1100 0.577 0.048 V 0.1800 1.113 0.740 V
0.1200 0.684 0.049 V 0.1830 1.113 0.766 P
0.1291 0.805 0.039 P 0.1850 1.150 — P
0.1300 0.806 0.039 V 0.1900 1.146 0.803 V
0.1395 0.920 0.064 P 0.1940 1.146 0.796 P
0.1400 0.919 0.055 V 0.2000 1.234 0.825 V
0.1498 1.059 0.105 P 0.2110 1.237 0.860 P
0.1500 1.058 0.098 V 0.2130 1.275 0.863 P
0.1530 1.150 — P 0.2400 1.400 0.902 P
0.1600 1.187 0.227 V 0.2500 1.500 0.913 P

TABLE V. Ratios of the ellipsoid length 2a and the radius of the inscribed
spherer ins @see Eq.~42!#, in the truncated octahedral simulation cell at
nematic coexistence densities for systems with elongations in the range
x55 to x520. The coexistence data were determined by Gibbs–Duhem
integration in all cases~see Table VI! except for †~thermodynamic integra-
tion! and ‡ ~Gibbs simulation!.

N x 2a rnem/rcp 2a/r ins

216† 5.000 2.924 0.529 0.811
216 5.743 3.207 0.482 0.862
216 6.597 3.517 0.433 0.912
216 7.579 3.858 0.395 0.971
500 7.579 3.858 0.391 0.731
500 8.706 4.232 0.350 0.773
500 10.00 4.642 0.320 0.823
1000 10.00 4.642 0.321 0.653
1000 11.49 5.091 0.274 0.680
1000 13.20 5.584 0.256 0.730
1000 15.16 6.125 0.230 0.772
1000 17.41 6.718 0.194 0.801
500† 20.00 7.368 0.184 1.086
1000‡ 20.00 7.368 0.183 0.861

FIG. 2. Equation of state data for thex520 hard ellipsoid fluid from
constant-volume and constant-pressure MC simulations (N5500) ~points!,
with the density histogram from Gibbs simulation~solid line!. Coexistence
data from thermodynamic integration are indicated by the dotted lines.
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corrected every 10000 MC sweeps until it had converged to
within 1023. The production run, whereG was accumulated
as a block average, consisted of 50 000–80 000 MC sweeps.
The integration step size,Dl, was chosen to be115ln2, which
results in five integration steps betweenx55 andx510, and
five more betweenx520 andx510.

The ratios of the ellipsoid length andr ins @see Eq.~42!#
in the nematic phase for 5<x<20 are shown in Table V.
The densities shown in Table V are those at coexistence with
the isotropic phase. For the integration fromx55 to
x57.579 a system size ofN5216 was sufficient; from this
point to x510 a system sizeN5500 was required; between
x510 andx520 a system size ofN51000 in each phase
was needed. System size effects on the chemical potential
and pressure may be important in evaluating phase coexist-
ence. Smit and Frenkel have given an explicit expression for
the finite-size corrections to the excess chemical potential47

DmN
ex5

@12kBTrkT#2

2NrkT
, ~43!

wherekT is the isothermal compressibility

kT52
1

V S ]V

]PD
T

5
^dV2&
VkBT

, ~44!

where the last formula applies in the constant-NPT en-
semble. To gauge the effect of changing system sizes at
x57.579, Dm was calculated at the relevant coexistence
pressure

Dm5 ln~r216/r500!1Dm216
ex 2Dm500

ex , ~45!

where the subscripts denoteN. In both the isotropic and
nematic phasesDm;0.01, and so the finite-size corrections
were deemed to be small compared to the numerical accu-
racy of the integration technique. We note that a more accu-
rate expression for the finite-size correction to the chemical
potential has been given by Siepmannet al.,48 but Smit and
Frenkel’s result is sufficient to show that it is small in the
present case.

V. RESULTS

In Table VI we summarize the coexistence pressure,
densities and nematic order parameters at the transition, for
5<x<20, as determined by Gibbs–Duhem integration. The
chemical potentials of the two phases provide a measure of
integration accuracy along the coexistence line, and have
been calculated simply by integrating Eq.~23! using the trap-
ezoid rule

m25m11E
l1

l2
Gdl1E

P1

P2
vdP

.m11
1
2~G21G1!~l22l1!1 1

2~v21v1!~P22P1!.

~46!

At each elongation along both pathsx55→10 and
x520→10 the chemical potentials in the two phases are
equal to within 0.08. The chemical potentials atx510 agree
to within 0.29~isotropic! and to within 0.16~nematic!, which

gives an idea of the accumulated errors in this quantity; the
coexistence densities are almost identical via both routes.

In Table I we present the corresponding coexistence data
predictions from Parsons and Onsager theory, using the ‘‘ex-
act’’ expression forB2(e–e8) as well as the Legendre expan-
sion, Eq. ~7!. Clearly the results using the expansion for
B2(e–e8) are subject to truncation errors asx becomes large,
as evidenced by the tabulated values ofB2

i /4v0, and so elon-
gations only up tox520 were studied with it. At lowx the
coexistence results are very similar. From now on we shall
only consider those results obtained with the exact values of
B̄2.

In Fig. 3 the coexistence pressure is shown as a function
of 1/x. The Parsons predictions are seen to represent the
simulation results more accurately than the Onsager theory.
As x becomes large, the Parsons and Onsager theories con-
verge, signalling the approach to the Onsager limit.

This approach is seen more clearly on a plot of the co-
existence densities against 1/x, as shown in Fig. 4. It is con-
venient to scale the densities for each elongation byB̄2

iso as
given by Eq.~18!. As 1/x→0, the Parsons results are seen to
collapse onto the Onsager predictions in both phases. Spe-
cifically, in the Onsager limit, r isoB̄2

iso53.291 and
rnemB̄2

iso54.209; the approach ofrB̄2
iso in the two phases is

shown in Fig. 5. Simulation results are also shown in this
figure. In earlier work Lee26 estimated that the Parsons re-
sults, in the case of the hard Gaussian overlap model, col-
lapse onto the Onsager results forx>25, from a graph simi-
lar to Fig. 4. A graph such as Fig. 5 shows this effect much
more clearly. The Parsons results are clearly more accurate,
with respect to simulation data, than the Onsager predictions
away from the Onsager limit, i.e., 5<x<20.

The nematic order parameter,S, at coexistence is shown
as a function of 1/x in Fig. 6. The simulation results give an
indication of a rise inS as x→`, but statistical errors and
finite-size errors preclude a more accurate interpretation. In-
terestingly the Parsons transition order parameters are higher

FIG. 3. The isotropic-nematic coexistence pressure versus 1/x: Gibbs–
Duhem integration~points!, Parsons theory~solid line!, Onsager theory~dot-
ted line!.

2847Camp et al.: The isotropic–nematic phase transition

J. Chem. Phys., Vol. 105, No. 7, 15 August 1996

Downloaded¬17¬May¬2005¬to¬128.205.114.91.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



than the Onsager results at a given elongation, despite the
Onsager theory predicting higher nematic coexistence densi-
ties. This is due solely to the nature of the transformation
between the density variables~those multiplied byB̄2) in the
Onsager~4a! and Parsons~6a! expressions. The relative den-
sity change,Dr/ r̄, where r̄5(r iso1rnem)/2, predicted by
the Parsons theory should be smaller than that predicted by
Onsager theory. This is indeed the case, as illustrated in Fig.
7: Onsager theoryoverestimatesthe strength of the transi-
tion, as measured in this way. In terms of the simulation
results, the relative density change is a more accurate indi-
cator of the strength of the transition, than the value of the
order parameter. The order parameters,S, often used by ex-
perimentalists as such an indicator, are significantly higher
for these systems than those measured in real mesophases
(S;0.4).

VI. CONCLUSIONS

We have tested the versatility of the Gibbs–Duhem tech-
nique by application to the liquid crystal phase transition in
hard uniaxial ellipsoid fluids. The coexistence pressure line
as a function of elongation has been mapped out in the range
5<x<20. Matching the results atx510 from two indepen-
dent routes has provided a good check on the accuracy of the
method. Reference 13 provides an analysis of the error in the
initial coexistence pressure carried through the integration,
assuming no integration errors. This showed that subsequent
estimates of the coexistence pressures will be worse on ap-
proach to a weak transition or critical point. On this basis the
results from the integration path fromx55→10 should, in
principle, be slightly more accurate than those from
x520→10.

We see the transition weakening with decreasing elon-
gation: The fractional density differenceDr/ r̄ falls from

FIG. 4. The isotropic-nematic coexistence densities versus 1/x: Gibbs–
Duhem integration~points!, Parsons theory~solid line!, Onsager theory~dot-
ted line!.

FIG. 5. The isotropic–nematic coexistence densities scaled byB̄2
iso in the

isotropic phase, versus 1/x: Gibbs–Duhem integration~points!, Parsons
theory ~solid line!, Onsager theory~dotted line!.

FIG. 6. The nematic order parameters at coexistence versus 1/x: Gibbs–
Duhem integration~points!, Parsons theory~solid line!, Onsager theory~dot-
ted line!.

FIG. 7. The percentage density change versus 1/x: Gibbs–Duhem integra-
tion ~points!, Parsons theory~solid line!, Onsager theory~dotted line!.
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about 18% forx520 through 12% atx510, to about 4% at
x55. The transition order parameterS also falls from 0.75 at
x520 to 0.66 atx55, but this is not such a dramatic change,
and the values are still high compared with those seen in
thermotropic liquid crystals.

Simple scaling of the free energy functional for hard
ellipsoids, following the prescription of Parsons and Lee, in
conjunction with accurate calculations ofB̄2, gives results
quantitatively comparable with those from computer simula-
tion. The approach to the Onsager limit has, up until now,
been blighted by the slow convergence of the expression for
the pair excluded volume: The higher order coefficients are
more difficult to compute accurately. We have presented an
essentially exact expression for the pair excluded volume of
two hard ellipsoids which has enabled us to investigate the
approach to the Onsager limit with elongations up to
x51000.

Several future projects are suggested. The effect of par-
ticle biaxiality on the I-N transition in hard ellipsoids could
be investigated by integrating from the uniaxial limit: very
little work on this particular system has appeared since the
first preliminary study.49 The effect of elongation on the for-
mation of liquid crystalline phases could be investigated in
hard ellipsoids, by very careful integration fromx55 to
lower elongations. The effect on the phase diagram of vary-
ing parameters in more realistic intermolecular potentials, for
example the Gay–Berne model,50 following the approach of
Refs. 10,11,13, is a further application. Given the large pa-
rameter space for systems of this kind, Gibbs–Duhem inte-
gration should be an efficient way of mapping out large parts
of the phase diagram.
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