Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids

Li Li, Gang Wu, Bo-Qing Xu *

Innovative Catalysis Program, Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China

Received 9 December 2005; accepted 19 May 2006
Available online 7 July 2006

Abstract

Characteristics of nanosized Pt electro-catalyst deposited on carbon nanotubes (CNTs) were studied with CO-stripping voltammogram and chronoamperometry measurements. The CNTs were pretreated by oxidation in HNO₃, mixed HNO₃ + H₂SO₄ and H₂SO₄ + K₂Cr₂O₇ solution, respectively, to enable surface modification. Well-homogenized Pt particles (average size: ≈3 nm) were loaded onto the pretreated CNT samples by a modified colloidal method. TEM, BET, FTIR and XRD techniques were used to characterize the physicochemical properties of the pretreated CNT samples. In the electro-oxidation of CO, all the Pt/CNT samples showed lower on-set as well as peak potentials than the conventional Pt/XC-72 electro-catalyst, indicating that the Pt/CNT samples were more resistant to CO poisoning and could be superior anode electro-catalyst for the proton exchange membrane fuel cells (PEMFCs). Moreover, we found that the pretreatment of CNTs in mixed HNO₃ + H₂SO₄ solution was very beneficial for the performance enhancement of Pt/CNT electro-catalyst; the catalyst obtained as such gave the lowest peak potential and the highest catalytic activity for the electro-oxidation of CO. Larger amount of oxygen-containing functional groups, higher percentage of mesopores, and higher graphitic crystallinity of the pretreated CNTs were considered crucial for the performance enhancement, e.g., by strengthening the interaction between Pt nanoparticles and the CNT support and enhancing the mass diffusion in the electro-chemical reaction.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Carbon nanotubes; Chemically modified carbons; Catalyst support; Electro-chemical properties; Chemical treatment

1. Introduction

There has been increasing interest in proton exchange membrane fuel cells (PEMFCs) as zero emission power sources [1–3]. Pure hydrogen is an ideal fuel for PEMFCs. However, the production, storage and refueling infrastructure of hydrogen are still of significant problems [4]. To avoid such difficulties, the use of hydrogen-rich synthetic gas obtained from steam-reforming or partial oxidation of alcohols or hydrocarbons can be a feasible choice [5–7]. For example, the methanol reforming results in a gas mixture of approximately 74% H₂, 25% CO₂ and 1–2% CO [8]. However, a detractor to this technology is that the presence of even a small amount of CO would result in poisoning of the hydrogen oxidation reaction occurring at the anode Pt catalyst, and consequently lower energy conversion efficiency; which is referred to as CO-poisoning effect [9,10]. Using special selective oxidation catalyst, the CO concentration in hydrogen can be reduced further to approximately 2–100 ppm. But even at this level, the CO-poisoning effect could also significantly plague the long-term performance of the PEMFC stack [11].

The literature is rich in the electro-oxidation of CO on Pt single crystals with regular (100), (110) and (111) surfaces in acidic electrolytes [12–14]. CO adsorbed on these surfaces appears as linearly bonded species and its adsorption isotherm can be fitted with Tempkin equation [15]. The CO-poisoning effect is arisen from a blocking by CO
of the surface sites active to hydrogen adsorption since CO molecules are bonded much more strongly and the oxidation potential of adsorbed CO is much higher than that of adsorbed hydrogen [16–18].

Three different approaches have been being attempted to mitigate the effect of CO poisoning in PEMFC technology [18]: (1) use of suitable platinum alloy electro-catalyst to increase the competitiveness of hydrogen adsorption, (2) assuming higher cell operating temperature to reduce the dynamic coverage of CO at the Pt surface, and (3) adding assuming higher cell operating temperature to reduce the increase the competitiveness of hydrogen adsorption, (2) use of suitable platinum alloy electro-catalyst to mitigate the effect of CO poisoning in PEMFC technology [27–35]. A number of sidered as promising supporting materials for the electro-catalytic activity for the oxygen reduction reaction (ORR) at the cathode and methanol oxidation reaction (MOR) at the anode catalyst [20–23].

Being a new form of carbon materials [24], carbon nanotubes (CNTs) have been a main focus of many current research efforts since recent development in large-scale syntheses of the material has significantly increased their availability [25,26]. Due to their unique structure, high surface area, low resistance and high stability, the CNTs are considered as promising supporting materials for the electro-catalyst in the PEMFC technology [27–35]. A number of earlier investigations have shown that Pt deposited on CNTs can exhibit high activity for methanol electro-oxidation as well as oxygen electro-reduction [28–35]. But, a pretreatment of the CNT support in oxidative mineral acid was always found beneficial for a homogeneous metal deposition and thus for better catalytic performance [21–23,30–33]. The oxidative pretreatment can affect the density of surface functional groups which could be necessary for better metal deposition and metal-support interaction [32,33].

A suitable electro-catalyst in the PEMFC technology should be at least less sensitive to CO poisoning than the conventional Pt/XC-72 catalyst. However, little is known about effects of the supporting carbon materials on the electro-chemical oxidation of CO. In the present study, we investigate the effects of oxidative pretreatments of CNTs in different mineral acids. The pretreated CNT samples are characterized with BET, TEM, XRD, FTIR, and electro-chemical measurements to understand the effect of supporting carbon material on the electro-catalytic oxidation of CO.

2. Experimental

2.1. Pretreatment of CNTs in oxidative acids

The multi-wall carbon nanotube (MWNT) (i.d. 3–10 nm, o.d. 6–20 nm, ratio of length to diameter 100–1000) material was received from the laboratory of Professors Wei and Luo of the Chemical Engineering Department (Tsinghua University), where the material was prepared by catalytic vapor deposition (CVD) of propylene using Fe/Al2O3 as the catalyst [36]. Pretreatments of the as-received CNT material were conducted by immersing the material in oxidative mineral acids, followed by refluxing at 80–90 °C for 3 h under vigorously agitation. After separation by filtration, the pretreated materials were washed extensively with deionized water and dried in air at 120 °C for 5 h. The mineral acids used for the pretreatments were 30% HNO3, mixed 98% H2SO4 + 70% HNO3 and 98% H2SO4 + 0.4 M K2Cr2O7 solutions, resulting in samples denoted CNTs-I, CNTs-II and CNTs-III, respectively. Pretreatment of the well-known Vulcan XC-72 carbon with mixed 98% H2SO4 + 70% HNO3 acids produced a carbon sample coded as XC-72-II.

2.2. Catalyst preparation

All the catalyst samples were prepared by Pt deposition onto the supporting carbon materials using a modified colloid method described in our earlier work [37]. Briefly, a Pt sulfite complex was first synthesized from K2PtCl6 and NaHSO3. This Pt sulfite complex was dissolved in deionized water at pH = 3.0 and then proper amount of CNTs was added to form a CNT suspension in the solution. Under vigorous stirring and careful pH (∼3.0) control with aqueous NaOH, hydrogen peroxide was then added dropwise to induce oxidative decomposition of the sulfite complex to deposit Pt nanoparticles onto the suspended CNTs. After extensive washing, the solid from the solution was finally dried at 393 K to give the Pt/CNT catalyst. Pt loading in the catalysts was 20 wt%. The Pt/CNTs-as-received and Pt/XC-72, which represent Pt catalysts supported by CNTs-as-received and Vulcan XC-72 carbon, respectively, were prepared as reference catalysts for comparison purpose. And also, a use of the pretreated Vulcan XC-72 carbon as the catalyst support produced the Pt/XC-72-II catalyst.

2.3. Characterization and CO electro-oxidation evaluation of the catalysts

Surface areas and pore size distribution of the carbon materials and their supported Pt catalysts were measured by nitrogen adsorption at 77 K on a Micromeritics ASAP 2010C instrument. Transmission electron microscopy (TEM) was performed on a Hitachi H800 microscope operating at 150 kV to determine sample morphology and metal dispersion. Fourier transform infrared transmission spectroscopy (FTIR) was carried out on a PE 2000 FTIR spectrometer. The frequency was scanned from 400 to 1400 cm−1 with a total of 20 scans for each of the samples. The sample was mixed and grounded with KBr at a ratio of 1:20 (wt.) before it was pressed into a wafer for the measurement. The crystallinity of the samples was determined by X-ray diffraction (XRD) performed on a Bruker d8 diffractometer equipped with a Cu Kα radiation and a graph-
ite monochromatic operation at 45 kV and 40 mA. The dif-
fracton patterns were scanned at a rate of 1.2 deg/min with
a scan step of 0.02 deg.

The catalyst electrodes were prepared by conventional
ink method. The catalyst inks were prepared by mixing
5 mg catalyst sample with 0.25 ml isopropanol, followed
by adding 20 μl Nafion (5% in ethanol solution) and dis-
persing ultrasonically for 15 min. To prepare the working
electrode, 50 μl of the ink was pasted onto the carbon
paper to obtain a Pt loading of approximately 0.2 mg/
cm². The electro-chemical measurements were carried out
with 0.5 M H₂SO₄ solution as the electrolyte in a three-
electrode cell at 298 K. A saturated calomel electrode
(SCE) and a Pt foil were used as the reference and the
counter electrodes, respectively. The cyclic voltammogram
and chronoummetry measurements were performed on
a PARC EG&G M273 electro-chemical system. The elec-
trono-chemical potential data reported in this paper were cal-
ibrated to the SHE values. Unless otherwise specified, the
solutions were firstly deaerated with high purity nitrogen
prior to any measurement. For the CO-stripping measure-
ment, the working electrode was repeatedly scanned in
between 0 and 1.2 V at a sweep rate of 100 mV/s to assure
stabilization of the electrode in 0.5 M H₂SO₄ solution.

3. Results and discussion

3.1. Effects of pretreatment on the physicochemical property
of CNTs

Fig. 1 shows the TEM images of the CNT samples
before and after the oxidative pretreatments. All of these
CNT samples are featured by hollow tubular nanostruc-
tures with diameters in between 6 and 20 nm (pore diam-
eter: 3–10 nm) and length up to several micrometers,
demonstrating no change of the structural feature of the
CNTs after the different pretreatments. The as-received
CNT sample (Fig. 1A) and the one pretreated with nitric
acid (CNTs-I: Fig. 1B) were contaminated with some

Adsorption of CO on the electrode catalyst was conducted
by bubbling carbon monoxide (UHP grade) through the
electrolyte (0.5 M H₂SO₄) for 15 min, followed by purging
with nitrogen for 20 min to remove any residual CO from
the solution. The CO-stripping CV curve and blank CV
curve were obtained from two consecutive scan cycles in
between 0 and 1.2 V (sweep rate: 10 mV/s). The chronou-
amperometric curves of the CO electro-oxidation were
measured at 0.7 V in flowing CO.

Fig. 1. TEM micrographs of the as-received (A) and activated CNTs (B–D). B, CNTs-I; C, CNTs-II; D, CNTs-III.
impurities including the Fe/Al₂O₃ catalyst, which was employed in the CVD preparation of the as-received CNTs. The impurities disappeared after the sample was pretreated in either of the mixed acids, H₂SO₄ + HNO₃ (CNTs-II: Fig. 1C) or H₂SO₄ + K₂Cr₂O₇ (CNTs-III: Fig. 1D), indicating that the mixed acids were effective in eliminating the impurities from the as-received sample.

The specific surface area and porosity of the CNT samples as well as Vulcan XC-72 carbon were measured by N₂ physisorption at 77 K and the results are shown in Fig. 2 and Table 1. All the adsorption–desorption isotherms belong to Type IV in the classification of IUPAC [38], with obviously adsorption–desorption hysteresis loop at the high pressure side. The Type-IV adsorption isotherm characterizes the existence of mesoporosity of the CNT samples, which may play an important role in the later Pt deposition processes [39]. As in many other documentations [40–44], the well-known BJH method was used to analyze the desorption branch of the isotherms at relative high pressure to obtain the pore size distribution of the CNT samples (Fig. 3). According to the definition for micropores (below 2 nm), mesopores (between 2 and 50 nm), and macropores (above 50 nm) [44], microporosity is significant in the Vulcan XC-72 carbon while mesoporosity dominates in all of the CNT samples. Within the CNT samples, it is easy to see that the pore size distribution was significantly affected by the pretreatment condition (Fig. 3 and Table 1). In comparison with the as-received CNTs without any pretreatment, the percentage of pores within 10–50 nm was significantly enhanced in CNTs-II and CNTs-III, while in CNTs-I the pores with sizes in between 5 and 10 nm were increased pronouncedly. The fact that the increased porosity in CNTs-I (Fig. 3A) was contributed
by those pores with sizes (5–10 nm) slightly smaller than the diameters of carbon tubes in the CNT material (Fig. 1) suggests that the pretreatment with 30% HNO₃ effected opening of the closed ends of the carbon tubes. On the other hand, the increased porosity at 10–50 nm in CNTs-II and CNTs-III would indicate a disentanglement of the entangled carbon nanotubes by the pretreatments with the mixed HNO₃ + H₂SO₄ and H₂SO₄ + K₂Cr₂O₇. Recently, Rolison et al. [44,45] reported that molecules within microporous channels could suffer significantly hindered transport, while molecules in mesoporous channels can approach diffusion rates comparable to those in an open medium. Therefore, in terms of the pore structure, the mesoporous CNTs would be more optimistic as the supporting material for electro-catalysts.

The specific BET surface areas of these carbon samples are calculated by the BET equation and the total pore volumes are obtained from the amount of nitrogen adsorbed at a relative pressure of 0.99 at 77 K. As listed in Table 1, the total pore volumes of the CNT materials increased after the pretreatments due to the removal of impurities either inside the canals or at the ends of the carbon nanotubes.

FTIR was used to detect the overall change of functional groups on the surface of CNTs before and after the oxidative pretreatments, the results are shown in Fig. 4. In comparison with the other samples, much stronger absorption bands were found at 1000–1200 cm⁻¹ for CNTs-II. According to Ref. [46], these results indicate that a high density of surface functional groups, such as C—OH and —C═O, are created on the surface of CNTs after the pretreatment in the mixed HNO₃ + H₂SO₄ acids. However, no significant formation of surface functional groups was detected in CNTs-I and CNTs-III. It is interesting to see that the functional groups of CNTs-II were similar by nature to those of the starting as-received CNTs, although their densities were much lower in the later sample. A referee questioned about that the functional groups of the as-received CNTs might affect the formation of surface functional groups during the oxidative pretreatments. This is an interesting point that needs to be clarified in future work.

Fig. 5 compares the XRD patterns of the carbon materials used in the present study. The samples pretreated with the mixed acids (i.e., CNTs-II and CNTs-III) exhibited excellent graphitic crystallinity by showing clear diffraction peaks associated with the (002), (100) and (004) planes. XC-72 carbon, CNTs-I and the as-received CNTs seem to contain significant amorphous features because they showed exceptionally wide diffraction peaks from the (002) and (100) planes. It has been reported [47] that the graphitic crystallinity of the carbon support is important for electron transport in the electro-chemical reactions due to its good electronic conductivity and interaction with the supported metal catalyst. Hence, in terms of electronic conductivity, CNTs-II and CNTs-III could be more effective supporting materials for Pt electro-catalyst.

To summarize, the morphology, crystallinity and surface properties of CNTs are modified by the pretreatments with oxidative mineral acids. In particular, the pretreatment of the as-received CNTs with mixed HNO₃ + H₂SO₄ acids produced sample CNTs-II having fairly large mesoporosity at pore sizes larger than 10 nm, higher concentration of surface functional groups and good graphitic crystallinity.

3.2. Morphology of the Pt/CNT electro-catalysts

Fig. 6 shows the typical TEM images of Pt particles deposited on Vulcan XC-72 and the CNT materials. The large light gray particles and tubes are the images of the carbon materials (A for Vulcan XC-72; B–E for CNTs in Fig. 6) while the scattered black spots are the images of Pt particles. With the aid of filter technology and tilting operation of TEM, we found that Pt particles were deposited on both the inner and outer surfaces of the carbon nanotubes in the Pt/CNT catalysts. The bar graphs located on the right of the TEM images in Fig. 6 show the size distribution of Pt particles, obtained by randomly measuring the sizes of at least 150 particles in the magnified TEM
images. The averaged size of Pt particles in each of the Pt loaded samples is listed in the last column of Table 2. Irre-
spective of the pretreatments of CNTs, the averaged Pt particle sizes (∼3 nm) in all Pt/CNT catalysts were found quite close to that in Pt/XC-72 catalyst. However, the size distribution was narrower (1–5 nm) in Pt/XC-72 and Pt/CNTs-
III than those in other Pt/CNT catalysts (1–8 nm).

3.3. Electro-chemical oxidation of CO on Pt/CNT electro-catalysts

Fig. 7 shows the CO-stripping and background voltam-
mograms of the Pt/CNT catalysts in 0.5 M H₂SO₄ solution at a sweep rate of 10 mV/s. The results of Pt/XC-72 are also included in this figure for comparison. It is seen that the background current, associated with the double-layer capacitance, of the electrode with Pt/CNTs-as-received is much lower than those with Pt/CNTs-I, -II and -III, possibly due to poor mesoporosity and smaller percentage of accessible surface in Pt/CNTs-as-received [28]. The clear peaks at the low potential side (0.1–0.3 V) proved the occurrence of hydrogen adsorption on the Pt catalysts. Blank CO-stripping measurements with either pretreated or non-pretreated CNTs, instead of Pt/CNT catalysts, for the electrode demonstrated no adsorption of CO on the surface of the CNT materials. Therefore, the peaks in
CO-stripping measurements of Fig. 7 are undoubtedly associated with the electro-oxidation of CO molecules adsorbed on the Pt catalysts. The disappearance of the hydrogen adsorption peaks at low potentials on the CO-stripping curves indicates blocking of the hydrogen adsorption sites by CO adsorption, i.e., CO-poisoning, in the Pt/CNT and Pt/XC-72 electrode catalysts. The onset potentials of CO electro-oxidation on the different Pt/CNT catalysts appeared in between 0.5 and 0.6 V, which are significantly lower than the onset potential (0.7 V) on Pt/XC-72 catalyst. Also, the CO oxidation peaks on every Pt/CNT catalyst were negatively shifted by 40–160 mV in comparison with the one on the Pt/XC-72 catalyst (Fig. 7 and Table 2), indicating that all of the Pt/CNT catalysts are more tolerant to CO poisoning. Moreover, it is noticeable that the catalyst Pt/CNTs-II gave the lowest onset (0.51 V) and peak (0.68 V) potentials and showed also the highest areal specific activity for the electro-oxidation of CO.

A referee reminded us that the Vulcan XC-72 carbon in the reference Pt/XC-72 catalyst was not pretreated in the oxidative acids; the same pretreatment as for CNTs-II must be conducted in order to compare the resistibility to CO-poisoning of Pt/CNTs-II and Pt/XC-72. Pretreatment of Vulcan XC-72 carbon with mixed 98% H₂SO₄ + 70% HNO₃ acids was then conducted and the pretreated carbon sample was named as XC-72-II. We then obtained a Pt/XC-72-II catalyst by deposition of Pt onto this pretreated carbon support XC-72-II. The CO-stripping CV curve of this Pt/XC-72-II catalyst was also included in Fig. 7 and Table 2.

Table 2

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Onset potential, V vs RHE</th>
<th>Peak potential, V vs RHE</th>
<th>ECA, m²/g</th>
<th>Areal specific activity at 0.65 V (mA/cm² Pt)</th>
<th>TOF at 0.65 V, s⁻¹</th>
<th>Particle size, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/XC-72</td>
<td>0.65</td>
<td>0.82</td>
<td>74.4</td>
<td>0.0013</td>
<td>0.003</td>
<td>2.5 ± 0.5</td>
</tr>
<tr>
<td>Pt/XC-72-II</td>
<td>0.65</td>
<td>0.79</td>
<td>32.1</td>
<td>0.0060</td>
<td>0.014</td>
<td>–</td>
</tr>
<tr>
<td>Pt/CNTs-as-received</td>
<td>0.56</td>
<td>0.71, 0.81</td>
<td>15.6</td>
<td>0.0083</td>
<td>0.020</td>
<td>3.2 ± 0.5</td>
</tr>
<tr>
<td>Pt/CNTs-I</td>
<td>0.57</td>
<td>0.72, 0.81</td>
<td>24.4</td>
<td>0.0102</td>
<td>0.024</td>
<td>3.0 ± 0.5</td>
</tr>
<tr>
<td>Pt/CNTs-II</td>
<td>0.51</td>
<td>0.68, 0.74</td>
<td>30.9</td>
<td>0.0285</td>
<td>0.068</td>
<td>2.8 ± 0.5</td>
</tr>
<tr>
<td>Pt/CNTs-III</td>
<td>0.61</td>
<td>0.78</td>
<td>52.6</td>
<td>0.0049</td>
<td>0.012</td>
<td>2.6 ± 0.3</td>
</tr>
</tbody>
</table>
the parameters derived from the CO-stripping measurement on this catalyst added to Table 2 to compare with the other catalysts. Clearly, the onset (0.65 V) and peak (0.79 V) potentials of the CO electro-oxidation over Pt/XC-72-II are very close to those over its counterpart Pt/XC-72 catalyst, thus suggesting that the pretreatment of XC-72 carbon in the mixed 98% H₂SO₄ + 70% HNO₃ acids has little effect on the electro-oxidation of CO, although Pt/XC-72-II showed a much lower ECA than its counterpart Pt/XC-72 catalyst. Still, the onset (0.51 V) and peak (0.68 V) potentials over the catalyst Pt/CNTs-II appear to be the lowest.

Based on the electro-chemical area (ECA) obtained from the hydrogen adsorption peaks on the background voltammogram, and the areal specific activity (mA/cm²) of the Pt catalyst for the CO electro-oxidation, we calculated the catalytic CO turnover frequency (TOF) on surface Pt atoms at a given working potential (0.65 V), the results are given in Table 2. It appears that the intrinsic catalytic activity by the TOF rate is in the order of Pt/CNTs-II > Pt/CNTs-as-received > Pt/CNTs-II ≈ Pt/CNTs-III > Pt/XC-72. Quantitatively, the TOF rate on the Pt/CNTs-II catalyst was approximately five times that of Pt/XC-72-II but approximately 20 times that of Pt/XC-72 catalyst.

Therefore, the catalyst Pt/CNTs-II is unique in showing the lowest onset and peak potentials (Fig. 7) as well as the highest TOF rate for the electro-oxidation of CO (Table 2). These results suggested that the catalyst Pt/CNTs-II would be the most CO tolerant among the catalysts used in the present work. Xin et al. [22,23] and He et al. [28,29] found that Pt/CNTs exhibited enhanced activities and cell performance for the reduction of oxygen when it was used as the cathode catalyst.

The high graphitic crystallinity and high density of surface functional groups of the support CNTs-II would be responsible for the high resistibility to CO-poisoning of the catalyst Pt/CNTs-II since they could function to anchor the metallic catalyst and to strengthen the metal-support interaction [4] that would be beneficial for electron transfer in between the metal and supporting carbon material during the electro-chemical reaction. Electron transfer between Pt and carbon support was actually detected in an electron spin resonance (ESR) study of Baschuk and Li [3], who showed that the amount of unpaired electrons in Pt/C was much less than those in unsupported Pt black catalysts.

According to Refs. [12–14,18], electro-oxidation of CO would be possible only when there is formation of Pt−OH_ads at surface of the Pt catalyst:

\[
Pt + H_2O \rightarrow Pt−OH_{ads} + H^+ + e^- \tag{1}
\]

Theoretically, the potential required for the formation of Pt−OH_ads in the acid media is approximately 0.62 V at 25 °C [48]. With the presence of OH_ads (Pt−OH_ads), the electro-oxidation of adsorbed CO on the Pt surface can be expressed as [37]:

\[
Pt−CO + Pt−OH_{ads} \rightarrow 2Pt + CO_2 + H^+ + e^- \tag{2}
\]

Since the onset potentials of CO electro-oxidation are lower than 0.62 V on the present Pt/CNT catalysts, some active −OH groups or their equivalent might have been provided by the supporting CNTs, which would be partly the reason why the onset potentials of CO oxidation on Pt/CNT catalysts were reduced in comparison with the Pt/XC-72 catalysts. Further work will be needed to confirm this explanation.

Two well-separated CO oxidation peaks are observed in Fig. 7 on the catalyst samples except Pt/CNTs-III and the two Pt/XC-72 catalysts, indicating that two types of surface sites were available for CO adsorption. The presence of two types of surface sites for CO adsorption are consistent with Becdelievre et al. [12], who discriminated the CO adsorption species associated with the two types of surface sites by reversing the potential sweep just before the appearance of the second CO electro-oxidation peak. The

![Fig. 7. CO-stripping curves of Pt/CNTs and Pt/XC-72 samples in 0.5 M H₂SO₄ solution at 298 K with the sweep rate of 10 mV/s; the dashed lines show the background voltammogram curves before the CO adsorption.](image-url)
hydrogen adsorption–desorption signals on the subsequent potential sweep curve revealed that those adsorbed CO molecules associated with the second electro-oxidation peak were blocking the surface sites on which hydrogen atoms remained strongly adsorbed [12]. In other words, adsorbed CO molecules associated with the first CO electro-oxidation peak (i.e., the one on the low potential side) would block the surface sites that adsorb hydrogen with relative weak bonding. The studies performed by Beden and Lamy [13] on the electrodes with single crystals of Pt (111) and Pt (100) catalysts produced similar conclusions. Beden and Lamy also showed that the oxidation of CO on Pt (111) surface occurred at potential 50 mV lower than that on the Pt (100) surface. Thus, the peak at the lower potential of the present study could be associated with the electro-oxidation of the CO molecules adsorbed on the exposed (111) surface while that at higher potential with those bonded to the exposed (100) surface. According to in situ IR absorption studies in Refs. [13,14], the second peak at higher potential was connected with strongly adsorbed CO molecules, which means that CO adsorption on Pt(111) is weaker than it does on Pt(100) surface. On the other hand, the interaction strength of CO with the Pt catalyst could be dependent of the particle size of Pt, e.g., Mukerjee and McBreen et al. [49] showed that the strength of Pt–CO bond would increase as the Pt particle size became smaller than 5 nm. The single CO oxidation peak at the higher potential side (0.82 V) on Pt/CNTs-III and Pt/XC-72 electrodes seems in consistent with the Pt particle size effect on the bonding of CO at the Pt surface since Pt particles in these two catalysts were smaller than 5 nm (Fig. 6). Thus, the existence of Pt particles larger than 5 nm in the other Pt/CNT catalysts (Pt/CNTs-I, Pt/CNTs-II and Pt/CNTs-as-received) may be responsible for the first electro-oxidation peak of CO in Fig. 7. Hence, it is inferred that the preferred exposed catalyst surface is dominant by Pt (100) sites when the Pt particles are smaller than 5 nm but the surface becomes dominant by Pt (111) sites when the particles become larger.

Chronoamperometry measurements were carried out to evaluate the catalyst stability in the electro-oxidation of CO and the results are shown in Fig. 8. The current densities on all the electro-catalysts reduced sharply in the very initial minutes, followed by a gentle decrease to approach constant values after 15–20 min. This sharp decrease in the current density is most likely due to the exceptionally high surface coverage of CO at the beginning of the electro-oxidation reaction. The gentle decrease period would mean a transition in approaching a dynamically equilibrated CO coverage on the Pt catalyst. Then, the constant current density at longer reaction time would characterize a steady state of the adsorption and oxidative stripping of CO.

Therefore, the constant current densities in Fig. 8 can be used to evaluate the steady state catalytic activities of the electro-catalysts, which can be ranked in the order of Pt/CNTs-II > Pt/CNTs-as-received ≥ Pt/CNTs-III > Pt/CNTs-I > Pt/XC-72. This order is somewhat different from the one (i.e., Pt/CNTs-II > Pt/CNTs-I > Pt/CNTs-as-received > Pt/CNTs-III > Pt/XC-72) obtained in the CO-stripping CV measurements (Table 2), but both the chronoamperometry and CO-stripping CV measurements reveal that Pt/CNTs-II is the most active while Pt/XC-72 the least effective electro-catalyst for the electro-oxidation of CO.

On the other hand, electro-oxidation of CO on the electrode catalyst is affected by a number of steps at the molecular levels, including mass transfer (diffusion), adsorption, and surface electro-chemical oxidation and desorption. The electro-oxidation of adsorbed CO on Pt surface is undoubtedly a much slower step in comparison with the adsorption and desorption steps according to Ref. [13]. However, influence of CO diffusion on the electro-oxidation reaction is not yet clear. By varying the CO flowing (bubbling) rate during the chronoamperometry measurement, we investigated the CO diffusion effect over the catalysts Pt/CNTs-II and Pt/XC-72, respectively. Fig. 9 shows that the current densities of CO electro-oxidation at 0.7 V over Pt/CNTs-as-received (a), Pt/CNTs-I (b), Pt/CNTs-II (c), Pt/CNTs-III (d), and Pt/XC-72 (e) catalysts.

![Fig. 8. I–t plots of CO electro-oxidation at 0.7 V over Pt/CNTs-as-received (a), Pt/CNTs-I (b), Pt/CNTs-II (c), Pt/CNTs-III (d), and Pt/XC-72 (e) catalysts.](image)

![Fig. 9. The effect of CO flowing (bubbling) rate on the current of CO electro-oxidation at 0.7 V over Pt/CNTs-II and Pt/XC-72 catalysts: (a) 0.05 ml/min, (b) 2 ml/min, (c) 10 ml/min.](image)
density on the least active conventional Pt/XC-72 electrocatalyst was apparently affected by the CO flowing/bubbling rate, e.g., the current density was enhanced from 0.09 to 0.25 mA (≈3 times) when the CO flowing/bubbling rate was increased from 0.05 ml/min to 10 ml/min (200 times). In contrast, the current density on the most active Pt/CNTs-II electro-catalyst did not change during the variation of the CO flowing/bubbling rate. These results indicate clearly a significant CO diffusion effect on the electro-oxidation reaction with the conventional Pt/XC-72 catalyst but the effect can reasonably be neglected with the catalyst Pt/CNTs-II. The absence of CO diffusion effect on Pt/CNTs-II can be well accounted for by the dominant mesoporosity in its support material CNTs-II. It is therefore conclusive that mesoporosity of the supporting carbon material is also an important factor in effecting Pt catalyst for the electro-chemical oxidation of CO.

4. Conclusions

The morphology, crystallinity and surface properties of CNTs were modified by the pretreatments with oxidative mineral acids (HNO₃, mixed HNO₃ + H₂SO₄ and H₂SO₄ + K₂Cr₂O₇). In particular, pretreatment of the as-received CNTs with mixed HNO₃ + H₂SO₄ acids produced material CNTs-II having fairly large mesoporosity at pore sizes larger than 10 nm, higher concentration of surface functional groups and good graphitic crystallinity. The deposition of 20% Pt on the pretreated CNT supports by modified colloidal method led to Pt/CNT catalysts with average Pt particle size at approximately 3.0 nm.

The CO-stripping CV measurements showed that the Pt/CNT catalysts are more tolerant to CO poisoning since the CO electro-oxidation peak potentials over these Pt/CNT catalysts are 40–160 mV lower than that over the conventional Pt/XC-72 catalyst. The Pt/CNTs-II appeared to be the most CO tolerant catalyst since it showed the lowest onset (0.51 V) and peak (0.68 V) potentials on the CO-stripping curves; this catalyst also gave the highest catalytic TOF rate for CO electro-oxidation at 0.65 V. The steady state chronoamperometric measurements also confirmed that the catalyst Pt/CNTs-II is the most active catalyst for the electro-oxidation of CO.

Acknowledgements

The authors acknowledge the financial support of this work from NSF (Grants: 20590362) and the Ministry of Science and Technology (Grant: G2000026408) of China. We thank also the Analytic Foundation of Tsinghua University for partial support of the TEM measurements.

References

