Virial coefficients and equations of state for hard-polyhedron fluids

M. Eric Irrgang,† Michael Engel,‡¶ Andrew Schultz,§ David A. Kofke,§ and Sharon C. Glotzer†‡

†Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
‡Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
¶Institute for Multiscale Simulation, Friedrich-Alexander University, Erlangen-Nürnberg, 91058 Erlangen, Germany
§Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA

E-mail:

Abstract

Hard polyhedra are a natural extension of the hard sphere model for simple fluids, but no general scheme exists for predicting the effect of shape on thermodynamic properties, even in fluids of moderate density. Only the second virial coefficient is known analytically for general convex shapes, so higher order equations of state have been elusive. Here we investigate high-precision state functions in the fluid phase of 14 representative polyhedra with different assembly behaviors. We discuss historic efforts in analytically approximating virial coefficients up to $B_4$ and numerically evaluating them to $B_8$. Using virial coefficients as inputs, we show the convergence properties for four equations of state for hard convex bodies. In particular, the exponential
approximant of Barlow et al.\textsuperscript{[1]} is found to be useful up to the first ordering transition for most polyhedra. The convergence behavior we explore can guide choices in expending additional resources for improved estimates. Fluids of arbitrary hard convex bodies are too complicated to be described in a general way at high densities, so the high-precision state data we provide can serve as a reference for future work in calculating state data or as a basis for thermodynamic integration.

\textbf{Introduction}

The thermodynamic behavior of molecules and colloidal particles is often dominated by shape.\textsuperscript{[2]} But while the hard sphere (HS) system is a standard model for simple fluids, much less is known about non-spherical hard shapes. Padé approximant hard sphere equations of state (EOS) have been studied for half a century,\textsuperscript{[3]} and modern numerical techniques can calculate up to the twelfth hard sphere virial coefficients with high precision.\textsuperscript{[4–6]} In contrast, only the simplest of anisotropic shapes are well described analytically or in published numerical studies, and trends observed for specific families of shapes have not led to effective general expressions for even the third virial coefficient.\textsuperscript{[7]}

Indeed, the difficulty to derive an EOS for highly anisotropic polyhedra was discussed recently by Solana\textsuperscript{[8]} with respect to the hard tetrahedron system for which high-precision virial coefficients are available.\textsuperscript{[9]} Besides this tetrahedron data, we are not aware of other reports of virial coefficients for hard polyhedra.

Polyhedra are particularly interesting shapes because they are geometrically simple and can be synthesized with high shape-perfection and monodispersity in nanocrystals.\textsuperscript{[10]} Simulation studies of hard polyhedra demonstrate a rich set of assembly phenomena greatly exceeding that of hard spheres.\textsuperscript{[11–13]} The deviation from hard sphere behavior has been explained by the presence of well-defined facets inducing local alignment.\textsuperscript{[14]} As a result, the effective entropic interactions are directional, which affects the behavior of the hard polyhedron fluid even at intermediate densities. The knowledge of equations of state of hard
polyhedra promises insights into the dynamics of hard polyhedron systems and is a prerequisite for the establishment of particle shape as a thermodynamic parameter. Here we study state functions of 14 hard polyhedra that were chosen to cover a range of asphericities and serve as representative for diverse assembly behavior. We determine the compressibility factors of the polyhedron fluids using Monte Carlo simulation and calculate the first eight virial coefficients by numerically evaluating cluster integrals. We discuss implications for historic semi-analytic equations that incorporate geometric factors. Our findings test and compare the applicability and convergence of four forms of equations of state, each constructed in terms of arbitrary numbers of available virial coefficients. We examine the virial expansion in density, a free volume expansion, a modification to an EOS described by Solana, and the exponential approximant due to Barlow, et al. The functional forms of these equations are not capable of representing the sharp transition and coexistence region of a first-order phase transition, and so we cannot expect to provide a single state function across multiple phases. Previous literature casts doubt that convergence or divergence will be an effective way to predict phase transitions, but we are nevertheless surprised at the variety of behaviors observed across shapes, functional forms, and order of error in EOS schemes.

We investigate 14 polyhedra, including three Platonic solids (tetrahedron, cube, octahedron), three Archimedean solids (truncated tetrahedron, truncated cube, truncated octahedron), a Catalan solid (rhombic dodecahedron), two Johnson solids (square pyramid, triangular dipyramid), and four additional polyhedra (triangular prism, pentagonal prism, hexagonal prism, obtuse golden rhombohedron) with known phase behavior, as well as the 90% truncated tetrahedron.
The fluid EOS is commonly represented with the dimensionless compressibility factor $Z$, which is the ratio of the fluid volume to that of an ideal gas at the same temperature $T$, pressure $p$, and number of particles $N$. For a simple fluid consisting of $N$ particles of uniform volume $v_0$, a convenient notation uses the reduced pressure $p^* = \beta p v_0$ with $\beta = (k_B T)^{-1}$ and the packing fraction $\eta = v_0 \rho = v_0 N/V$ to write

$$Z = \frac{V}{V_{id}} = \frac{pV}{N k_B T} = \frac{\beta p}{\rho} = \frac{p^*}{\eta}. \tag{1}$$

The virial EOS is expressed as a power series in density to perturbatively describe the fluid phase relative to the ideal gas.

The $j^{th}$ order virial EOS (VEOS$_j$) is the power series

$$Z_{\text{VEOS}_j} = 1 + \sum_{k=2}^{j} \hat{B}_k \rho^{k-1} = 1 + \sum_{k=2}^{j} B_k \eta^{k-1}, \tag{2}$$

where $B_k = \hat{B}_k / v_0^{k-1}$ is the reduced $k$-th virial coefficient.

The second virial coefficient captures the initial departure from ideal gas behavior and is the last coefficient analytically solvable for general hard convex bodies (HCBs). It is given by

$$B_2 = 1 + \frac{RS}{v_0} = 1 + 3\alpha, \tag{3}$$

where it is useful to define a size-independent shape asphericity $\alpha = RS / 3v_0$ as a function of three fundamental shape measures: the surface area $S$ of a single particle; $R$, the mean curvature integrated over the surface and normalized by $4\pi$; and the particle volume $v_0$. $\alpha$ can be seen as relating the quantity $RS$ for a convex shape to that of a sphere of the same volume, such that $\alpha \equiv 1$ for a sphere.

It is possible to formulate equations of state that are parametrized using only $B_2$ but that are more accurate to higher densities than VEOS2 itself. Since van der Waals, it has
been common to describe \( Z \) not relative to absolute volume, but to non-excluded volume available to particles of finite size. Equation 4 for example, is known\(^{20}\) to converge faster than the VEOS for hard spheres. With \( a_1 = 1 \) and \( a_2 = 3\alpha \), \( Z_{FV2} \) is exact through \( B_2 \) but projects a better high-density fit for HCBs than VEOS2.

\[
Z_{FVn}(\eta) = \sum_{m=1}^{n} a_m \frac{\eta^{m-1}}{(1-\eta)^m} \tag{4}
\]

Values of \( a_m \) are calculable from known virial coefficients and tend to be of moderate magnitude.

A popular class of equations that extrapolates to higher density more accurately than a truncated virial expansion is the Padé approximant. Here, the compressibility factor \( Z \) is expressed as the ratio of two polynomials, the coefficients of which can be chosen by equating the first few terms of a Taylor expansion in \( \eta \) to targeted virial coefficients. The best-known Padé approximant for hard spheres is the Carnahan-Starling (CS) equation\(^{13}\) which was proposed empirically and predicts \( B_k = k^2 + k - 2 \). More accurate approximants are possible within Percus-Yevick theory\(^{22}\). In this article, we will broadly define an approximant as any functional form that is constructed to capture the effect of higher order terms in the density series, while adhering to the virial series to given order at low density.

Using \( B_2 \) and assuming \( Z_0 = 1/(1-\eta) \) as the low density limiting behavior\(^{11}\), Solana proposed\(^{12}\) capturing the shape-dependent perturbations to the hard sphere EOS in a single term \( c(\eta) \). We note that deviation from \( Z_{HS} \) is constrained to \( B_3 \) and higher if we first scale the sphere volume to match the known second virial coefficient. Using the “effective hard sphere” \( Z_{EHS} \), then, we have

\[
Z_{HCB}^{S'}(\eta) = \frac{1}{1-\eta} + c(\eta) \left( Z_{EHS}(\eta) - \frac{1}{1-\eta} \right) \tag{5}
\]

\(^*\)In fact, \( Z_0 = 1/(1-4\eta) \) for hard spheres, or \( Z_0 = 1/(1-(1+3\alpha)\eta) \) for general HCBs, would give exact behavior to \( B_2 \), but is obviously unsuitable as the basis for an extrapolation to higher density due to the pole.
where $Z_{\text{EHS}}(\eta) = Z_{\text{HS}}(\eta_{\text{eff}})$ and $\eta_{\text{eff}} = \eta(1 + 3\alpha)/4$.

For the purposes of this article, we neglect geometric arguments for approximating $c(\eta)$ and choose instead to solve for coefficients $c_i$ in $c(\eta) = \sum_{i=0}^{j-2} c_i \eta^i$ using numerically calculated virial coefficients to construct an approximant of $j^{\text{th}}$ order. $c_0$ is necessarily unity for HCBs, and $c_i$ depends on virial coefficients up to $B_{i+2}^{\text{HS}}$ and $B_{i+2}^{\text{HCB}}$.

The third virial coefficient $B_3$ is analytic for some particle shapes of high symmetry, and $B_4$ is known for hard spheres, but only $B_2$ is generally solvable e.g. for polyhedra. At higher densities, theoretical treatments must account for higher-order particle correlations. Rigorous studies of hard sphere systems\textsuperscript{23} illustrate the potential utility of methodologies commonly supporting analytic expressions for $3^{\text{rd}}$ and $4^{\text{th}}$ order approximants.

HCB approximants frequently incorporate $\alpha$ and other asphericity terms,\textsuperscript{24} which give some metric of a shape in relation to that of a quantifiably related sphere. Equations are easily normalized for particle size, but at least two quantities are necessary to capture the available shape information in $R$, $S$, and $v_0$. In addition to $\alpha$, several equations of state\textsuperscript{7,8,25} use a complementary geometric parameter, $\tau = 4\pi R^2/S$ that relates the surface area of a shape to that of a sphere with the same integrated mean curvature. \footnote{\(\tau\) and other simple asphericity metrics are neither clearly orthogonal to \(\alpha\) nor as well motivated as a quantities of thermodynamic relevance. Noting that $R$, $S$, and $v_0$ are all easily mapped to the set of Minkowski tensors,\textsuperscript{26} it may be that higher order information on a shape function could help to understand HCB thermodynamic behavior, but the authors cannot offer any insight at this time.}

Attempts at analytic expressions for $B_3$ frequently lead to expressions\textsuperscript{27,28} of the form

\begin{equation}
B_3 = 1 + 6\alpha + G, \tag{6}
\end{equation}

with the limiting constraint that $G \rightarrow 3$ for spheres. Boublík originally asserted $G \approx 3\alpha^2$, while more recent works\textsuperscript{7,25} explore dependence on an independent shape parameter $\tau$. Kihara and Boublík reason that $G = 3\alpha^2 \xi$ and attempt to constrain $\xi$ to some simple form $\phi(\tau)$, such that $3\alpha^2 \phi(\tau) = G = a_3$ in Equation 4.

Solana’s EOS yields $G = 3\alpha + 3 \frac{\partial c}{\partial \eta} \bigg|_{\eta=0}$ with the implied constraints that, in the low
density limit $\eta \to 0^+$, $c(\eta) \to \alpha$ while the derivative $\frac{\partial}{\partial \eta} c$ goes to zero for spheres and is non-zero for non-spheres.

Gibbons presented a generalized EOS\cite{gibbons} that was later improved.\cite{song,mason} A variant by Song and Mason\cite{song} (SM) projects to higher order by explicitly perturbing the hard sphere fourth virial coefficient.

Various proposed expressions for $B_4$ take the form $B_4 = 1 + 9\alpha + 3G + H$ but do not attempt to or succeed at describing polyhedra. We note, though, that $H$ is equivalent to $a_4$ from Equation 4, and

$$B_4 = a_1 + 3a_2 + 3a_3 + a_4$$

$$= 1 + 9\alpha + 3G + a_4. \quad (7)$$

Today, the computational cost of numerically determining $B_3$ and $B_4$ to high precision trivially surpasses the effectiveness of prior approximate methods. With knowledge of many numerically calculated virial coefficients, approximants can be constructed to arbitrary order.

Recently Barlow et al. introduced a generalized Padé approximant for repulsive spheres of arbitrary softness\cite{barlow} that extrapolates from a chosen number of virial coefficients used as inputs. The effectiveness of the approximant is enhanced over conventional Padé approximants by enforcing the same high-density asymptotic behavior as the model fluid being described. In the hard sphere limit, the $j^{th}$ order exponential approximant (EA$j$) takes the form of an exponential of a polynomial in density,

$$Z_{EAj} = \exp \left( N_2 \eta + N_3 \eta^2 + \cdots + N_j \eta^{j-1} \right) \quad (8)$$

with coefficients $N_i$ determined by matching the Taylor expansion of $Z_{EAj}$ to known virial coefficients.
Methods

Calculation of second virial coefficient

We calculate the second virial coefficient analytically using the conventional HCB expression, Equation 3, and three fundamental geometric measures.

Mean curvature (or the average of two principal curvatures) is most easily understood for a polyhedron as the limiting case of a spheropolyhedron as the rounding radius goes to zero. Extending the surface of a polyhedron outwards by a radius $r$, the facets, edges, and vertices become facets, cylindrical sections, and spherical sections on a resulting spheropolyhedron. For the spherical sections, principle curvatures are $\kappa_1 = \kappa_2 = 1/r$, so mean curvature $H = \frac{1}{2}(\kappa_1 + \kappa_2) = 1/r$. On the cylindrical sections, one of the principal curvatures is zero, and $H = 1/2r$. Mean curvature is zero on the facets.

Together, the spherical sections at the vertices comprise exactly one complete spherical surface, while the cylindrical sections along the edges have length $l_i$ and $\pi - \theta_i$ radians, where $\theta_i$ is the dihedral angle. Integrating the mean curvature over the surface of the spheropolyhedron is then straight-forward,

$$
\int_{\sigma} H \, dS = \sum_{\text{facets}} \int_{\partial} 0 \, dS + \sum_{\text{vertices}} \int_{\partial} \frac{1}{r} \, dS + \sum_{\text{edges}} \int_{\partial} \frac{1}{2r} \, dS
$$

$$
= \int_{S^2} \frac{1}{r^2} r^2 \sin \theta \, d\theta \, d\phi + \sum_{i} \int_{0}^{l_i} \int_{0}^{\pi - \theta_i} \frac{1}{2r} \, dl \, d\theta
$$

$$
= 4\pi r + \sum_{i} l_i \frac{\pi - \theta_i}{2}. \quad (9)
$$
In the limit as \( r \to 0 \), the (normalized) integrated mean curvature for a polyhedron is then given by

\[
R = \frac{1}{4\pi} \int H \, dS = \frac{1}{4\pi} \sum_i l_i \frac{\pi - \theta_i}{2}
\]  

(10)

The summation runs over all edges with edge length \( l_i \) and dihedral angle \( \theta_i \) between adjacent faces.

The remaining fundamental measures in Equation 3 are easy to calculate for convex polyhedra. The surface area due to the (triangulated) facets is given by the half-magnitude of the cross products of the edges, and the contributing volume of each is given by the volumes of the cones that share an apex at some interior point (such as the particle center of mass).

### Calculation of higher virial coefficients

Virial coefficients from \( \hat{B}_3 \) to \( \hat{B}_8 \) (Equation 2) for all of the polyhedra studied are calculated numerically, following methods very similar to those recently used to compute virial coefficients of hard spheres.\textsuperscript{5} We briefly review these methods here.

Each coefficient \( \hat{B}_k \) is given via the configurational integral (taking particle 1 to define the origin),

\[
\hat{B}_k = \frac{1 - k}{k!} \int f_{\hat{B}}(r^k, \omega^k) dr_2 \ldots dr_k d\omega_1 \ldots d\omega_k,
\]  

(11)

with the orientation integrals normalized to unity: \( \int d\omega_i = 1 \). The integrand \( f_{\hat{B}} \) is the sum of biconnected graphs,

\[
f_{\hat{B}}(r^k, \omega^k) = \sum_G \left[ \prod_{ij \in G} f_{ij} \right],
\]  

(12)

The graphs \( G \) are formed from \( k \) vertices, one for each particle appearing in the integral, with Mayer \( f \)-bonds joining some of the vertex pairs. For hard polyhedra, the Mayer function \( f_{ij} \) for the particles labeled \( i \) and \( j \) in the configuration \( (r^k, \omega^k) \) will be zero if they are not
overlapping, and $-1$ otherwise. The product in Equation 12 is taken over all pairs having a bond in the graph $G$, and the sum is over all doubly-connected graphs of $k$ vertices.

For each shape, we directly sample configurations efficiently by generating candidates from a sufficient but simple set of constraints.$^5$ Chains and trees are graphs having no closed loops and can easily be generated randomly to form a template. For each vertex in a template, a sphere of the size that circumscribes a polyhedron is randomly placed such that it overlaps a sphere to satisfy a template bond.

A configuration of polyhedra is then generated by placing a polyhedron at the center of each sphere, and assigning it a random orientation. The value of $f_{ij}$ for each pair is evaluated to yield a “configuration graph,” which has a bond joining pairs where $f_{ij}$ is nonzero. The configuration graph will in general have bonds in addition to those in the tree/chain because spheres may by chance be placed with more overlaps than are required by the template. Moreover, some of the template bonds may not end up being present in the configuration graph because they are enforced only for the circumscribing spheres, not the polyhedra themselves.

The configuration graph is used for an initial screening to quickly identify some of those configurations for which $\hat{B}_k$ is zero (for instance, we confirm that the configuration graph of polyhedra is doubly connected). If the configuration does not pass the screening, zero is added to the average. If it does pass, then we compute the integrand $f_{\hat{B}}(r^k, \omega^k)$ using Wheatley’s recursive algorithm,$^4$ and we compute the sampling weight for the configuration, $\pi(r^k, \omega^k)$, using the methods detailed previously.$^5$ The virial coefficient $\hat{B}_k$ is then given in terms of the average for this process, according to:

$$\hat{B}_k = \frac{1 - k}{k!} \left\langle \frac{f_{\hat{B}}}{\pi} \right\rangle_{\pi}$$  \hspace{1cm} (13)

where the angle brackets indicate the computed average.

For the 14 representative polyhedra, we sample $1.45 \times 10^{11}$ configurations for each co-
efficient. Within this total, independent sub-averages of $1 \times 10^8$ to $2 \times 10^9$ (varying with coefficient) samples are collected to generate uncertainty estimates, which are reported as one standard deviation of the mean (68% confidence level).

**Thermodynamic Monte Carlo simulation of hard polyhedron fluids**

We perform isobaric (constant pressure) hard particle Monte Carlo simulations using standard methods employed in previous works. At state points from $p^* = 10^{-4}$ up to the freezing transition, we simulate each system with periodic boundary conditions and we measure packing fraction. Each simulation begins with $N = 2048$ particles positioned and oriented randomly at a moderate density and we define a MC step to mean $N$ Monte Carlo trials. We initially targeted a relative uncertainty in packing fraction of $\leq 10^{-4}$ at up to 300 state points per shape, conservatively estimating a need to sample each state point up to 20 times with simulation trajectories up to $2.5 \times 10^6$ MC steps. In many cases, we have determined the sufficiency of fewer data for a state point and choose not to complete this protocol.

The hard sphere system fluid equilibrates easily within $0.5 \times 10^6$ MC steps even at high densities and within $0.1 \times 10^6$ steps at densities below $\eta \approx 0.25$. At $\eta \approx 0.25$ we observe that simulation densities for shaped particles converge by the time the Monte Carlo move sizes are optimized and fixed, variously at $0.2 \times 10^6$, $0.3 \times 10^6$, or $0.5 \times 10^6$ MC steps depending on the shape. For higher densities, then, the polyhedra are allowed to equilibrate for $1.5 \times 10^6$ MC steps and then packing fraction is measured over an additional $1.0 \times 10^6$ steps.

Below $\eta \approx 0.25$ packing fraction is measured from the step at which MC parameters are fixed. In order to give equal weight, the value contributed to a packing fraction measurement is extracted from the same range of MC steps in each trajectory. Since, at lower packing fractions, we are able to achieve our desired precision before completing $2.5 \times 10^6$ MC steps, some computations were terminated early and the trajectories are truncated to $1.2 \times 10^6$ MC steps.
Due to fairly long correlations in the denser systems (see Supporting Information), we do not expect a single trajectory to reasonably sample the entire ensemble and instead rely on independent simulations for uncorrelated measurements. Uncertainty in the state data is estimated from the standard error of the mean packing fraction from 5 to 20 independent simulations equilibrated and run with different random number seeds.

**Construction of approximants**

Approximants of the various forms discussed are constructed to exactly reproduce an arbitrary number of virial coefficients. The free volume equation of state (Equation 4) can easily be represented in terms of the numerically calculated virial coefficients with

\[
a_m = \sum_{k=1}^{m} (-1)^{k+m} \binom{m-1}{k-1} B_k
\]

and uncertainty propagated by

\[
\sigma_{Z_{FV}}^2 = \sum_{k=2}^{j} \left( \sum_{m=k}^{j} (-1)^{k+m} \binom{m-1}{k-1} \frac{\eta^{m-1}}{(1-\eta)^m} \sigma_{B_k} \right)^2.
\]

The other approximants (Equation 5 and Equation 8) are less trivial, but free parameters are solved by expressing a Taylor series expansion around \( \eta = 0 \) and equating terms to known reduced virial coefficients. This is easily performed by computer algebra (in this case with Wolfram Mathematica) along with the derived uncertainty propagated from the virial coefficients. For EOS orders 3 to 8, we have calculated \( a_m \) (Equation 4), \( c_i \) (Equation 5), and \( N_k \) (Equation 8).
Results and Discussion

We did not equilibrate simulations through the first ordering transition of each shape and we do not claim to precisely locate the ordering transitions. In the cases of the hard sphere, octahedron, and triangular dipyramid, the apparently equilibrated fluid data extend to pressures in metastable regions, but in these cases we restrict our comparisons to densities below the first ordering transitions noted in literature. The obtuse golden rhombohedron undergoes a liquid crystal transition above about $\eta = 0.25$ or $p^* = 1.9$, so we restrict our EOS analysis to the disordered fluid.

Figure 1 and Figure 2 compare semi-analytic equations of state to our simulation data. Up to the triangular prism, the exponential approximant provides the best 8th order EOS, generally staying within measurement precision longer and diverging later than the other EOSs. For more aspherical shapes, the 8th order VEOS and modified Solana EOS are as good or better. Remarkably, the VEOS describes the obtuse golden rhombohedron within 1–2% up to the liquid crystal transition while the approximants all diverge at somewhat lower densities.

For densities less than about half of the first ordering transition, compressibility values from the approximants generally converge quickly (Figure 3). All of the approximants match the simulation data better to higher densities than the VEOS at 3rd order and, for low asphericity, all three outperform the VEOS as high as 7th order. At 4th order and higher, the exponential approximant generally remains within 1% and within 5% to higher densities than the other EOS for shapes with asphericity $\alpha \lesssim 1.8$ but results are rather varied for higher asphericities.

Figure 3 illustrates the effectiveness of the approximants at projecting to higher order than the virial coefficients they are based on. At low order, the free volume equation of state captures higher than $O(\eta^j)$ terms (apparent in the slope of the error), and is within measurement precision to over 10% packing fraction. In fact, the 3rd order free volume EOS is superior to its 4th order version as well as the other EOSs. The plots for the free
volume EOS seem to show $|Z_{fv} - Z_{sim}|$ passing through the same point after emerging from noise at successively higher densities, though the ordering of the plots from left to right does not in fact correspond to increasing order of the EOS. If such a trend held, however, we would have the remarkable finding that an important density could be discerned simply by looking for zeroes in an expression of the difference between EOSs of successive order (E.g. $Z_{EOS(n+1)} - Z_{EOS(n)} = 0$). Additional plots in the Supporting Information clarify that the trend is not particularly strong, nor is the indicated density precise. Nevertheless, we note that the free volume EOS is unique among the equations studied in appearing to very nearly mark the density of the liquid crystal transition.

We tabulate coefficients for VEOS8 and FV8 in Table 2 and Table 3. $B_3$, $B_4$, and $a_3$, as well as $\tau$ (Table 1), are all nearly monotonic in $\alpha$ for the polyhedra studied, but $a_4$, calculated from virial coefficients, appears to amplify whatever information is available at lower order and appears less strongly correlated to asphericity. Predictive power of geometric quantities is less clear for higher virial coefficients, which become large and negative for highly aspherical polyhedra. This behavior suggests that the Song-Mason EOS and other Padé approximants that depend on only low-order virial coefficients are unlikely to capture thermodynamic behavior for general hard convex bodies.

In several cases, we find that the magnitude of a virial coefficient decreases substantially from the previous term, only to increase in a subsequent term. Apparently oscillatory behavior in virial coefficients has been previously reported, and our data support an assertion that the convergence of a virial series cannot be concluded from the appearance of a single small coefficient.

Remarkably, $\alpha$ appears to effectively sort shapes by the onset and magnitude of these oscillations. Virial coefficients of the most spherical shapes appear monotonically increasing, but the trend is broken at lower order and to a greater degree in direct correspondence to increasing $\alpha$. Negative virial coefficients appear with the cube ($\alpha = 1.5$), occurring at lower order and/or greater magnitude with each asphericity sampled.
While $\tau$ clearly contains different information than $\alpha$, its utility in thermodynamic prediction is not evident in the present study. We note, however, that expressions involving $\tau$ tend to appear in contexts including shapes much more aspherical than ours.

The breakdowns of the approximants for the triangular prism, the triangular dipyramid, the square pyramid, and the tetrahedron coincide with sign changes and large magnitudes in higher-order virial coefficients. All approximants fail beyond the first ordering transition, which can be crystallization or the formation of a liquid crystal (e.g., the nematic phase at $\eta = 0.25$ for the obtuse golden rhombohedron), but also fail to predict the phase change. No clear pattern emerges as to which EOSs become clearly non-physical before the phase change while others continue to describe the metastable fluid to higher densities. As expected, none of the equations studied are accurate beyond the isotropic fluid phase.

**Conclusion**

We have computed high-precision state data and virial coefficients for pure fluids of fourteen relevant polyhedra to compare several power series and approximant equations of state. The virial EOS and the exponential approximant have coefficients solved with Monte Carlo solutions to the configurational cluster integrals. The free volume EOS coefficients and the coefficients in our modification to Solana’s EOS are calculated in terms of the mapping to virial coefficients. We evaluate the virial EOS, a free volume EOS, a modification to an EOS based on hard spheres (due to Solana), and an exponential approximant due to Barlow *et al.* to consider which equations make the best use of numerically evaluated cluster integrals for order 3 through 8.

Each of the four equations may be expressed as an expansion in density to arbitrary order and, though we are unable to make strong statements regarding convergence in these expansions, the free volume expansion in particular has a tantalizing tendency to imply divergence at some density near the first ordering transition. A rigorous determination of
the first ordering transition densities may provide better background for further investigation.

More insight may be possible with additional virial coefficients, but since computing higher order cluster integrals quickly becomes astronomically expensive, some scheme of extrapolating to higher order is likely necessary. The graphical information in Figure 3 is available for all shapes in the Supporting Information, along with the simulation state data for further numerical analysis.

When no numerically approximated virial coefficients are available, polyhedra with asphericity less than $\alpha \approx 1.8$ are best represented by their “effective sphere” — equivalent to the trivial case of setting $c(\eta) \equiv 1$ in Equation 5.

We show that the free volume EOS (Equation 4) can be a particularly convenient and effective tool for estimation or to reduce the computational cost of hard particle studies. Given the equation’s simplicity and the ease with which $B_3$ can be calculated numerically, the equation can provide an excellent starting point for thermodynamic integration. If a researcher wants to integrate the pressure–volume state function in the fluid regime, equation Equation 4 provides at least three or four digits of precision up to densities of ten percent or more, requiring particle simulations to be run at only moderate densities and higher.

If more virial coefficients are available the exponential approximant provides a good alternative to the virial EOS, particularly for shapes less aspherical than $\alpha = 1.6$ to $\alpha = 1.8$ — the maximum density to which each equation is accurate for a given $\alpha$ depends on the required precision. Additional data are provided in Supplementary Information for thermodynamic reference data or to guide expenditure of computational effort in constructing an approximant for a chosen purpose.

**Supporting Information**

State data for each simulated shape in columns of pressure, packing fraction, and standard error of the mean packing fraction: peta.tgz; additional data visualization, methods descriptions: SI.pdf
Acknowledgements

The authors gratefully acknowledge discussions with Rolfe Petschek, Amir Haji-Akbari, Greg van Anders, and Pablo Damasceno. Computational resources and services supported by Advanced Research Computing at the University of Michigan, Ann Arbor, and by the University at Buffalo Center for Computational Research. This material is based upon work supported by the DOD/ASD(R&E) under Award No. N00244-09-1-0062 (M.E.I., M.E., S.C.G.) and by the National Science Foundation, grant CHE-1464581 (A.J.S., D.A.K.). M.E acknowledges funding by Deutsche Forschungsgemeinschaft through the Cluster of Excellence Engineering of Advanced Materials (EXC 315/2). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the DOD/ASD(R&E) or the National Science Foundation.
Table 1: Geometric quantities $\alpha = \frac{R S}{3\sqrt{3} V_0}$, $\tau = 4\pi \frac{R^2}{S^2}$, and $B_2 = 1 + 3\alpha$. Values calculated exactly to nine decimal places with Mathematica except for 90% truncated tetrahedron (a non-standard shape), calculated with 64-bit numerical precision using 9-digit vertex coordinates.

<table>
<thead>
<tr>
<th>shape</th>
<th>$\alpha$</th>
<th>$\tau$</th>
<th>$B_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. sphere</td>
<td>1.00</td>
<td>1.00</td>
<td>4.00</td>
</tr>
<tr>
<td>2. truncated octahedron</td>
<td>1.183723696</td>
<td>1.055618663</td>
<td>4.551171089</td>
</tr>
<tr>
<td>3. rhombic dodecahedron</td>
<td>1.224744871</td>
<td>1.110720735</td>
<td>4.674234614</td>
</tr>
<tr>
<td>4. truncated cube</td>
<td>1.321475138</td>
<td>1.070529044</td>
<td>4.964425413</td>
</tr>
<tr>
<td>5. 90% truncated tetrahedron</td>
<td>1.422338938</td>
<td>1.422338938</td>
<td>5.267016815</td>
</tr>
<tr>
<td>6. pentagonal prism</td>
<td>1.430966283</td>
<td>1.139815072</td>
<td>5.292898848</td>
</tr>
<tr>
<td>7. hexagonal prism</td>
<td>1.436467026</td>
<td>1.122382953</td>
<td>5.309401077</td>
</tr>
<tr>
<td>8. octahedron</td>
<td>1.439662680</td>
<td>1.253110832</td>
<td>5.318988041</td>
</tr>
<tr>
<td>9. cube</td>
<td>1.50</td>
<td>1.178097245</td>
<td>5.50</td>
</tr>
<tr>
<td>10. truncated tetrahedron</td>
<td>1.556403524</td>
<td>1.129390052</td>
<td>5.669210573</td>
</tr>
<tr>
<td>11. triangular prism</td>
<td>1.860042340</td>
<td>1.269711916</td>
<td>6.580127019</td>
</tr>
<tr>
<td>12. triangular dipyramid</td>
<td>1.974019921</td>
<td>1.396134539</td>
<td>6.922059762</td>
</tr>
<tr>
<td>13. square pyramid</td>
<td>2.101351984</td>
<td>1.360539523</td>
<td>7.304055953</td>
</tr>
<tr>
<td>14. tetrahedron</td>
<td>2.234571934</td>
<td>1.509477606</td>
<td>7.703715802</td>
</tr>
<tr>
<td>15. obtuse golden rhombohedron</td>
<td>2.853169549</td>
<td>1.317152762</td>
<td>9.559508647</td>
</tr>
</tbody>
</table>
Figure 1: Pressure versus packing fraction for the sphere and 14 polyhedra. The subfigures are in order of increasing asphericity $\alpha$ from left to right and top to bottom. We compare the Monte Carlo simulation data (gray circular markers) with the four $8^{th}$ order approximants: the virial equation (Equation 2) in blue, labeled “V”; the free volume EOS (Equation 4) in orange, labeled “F”; the modified Solana EOS (Equation 5) in green, labeled “S”; and the exponential approximant (Equation 8) in red, labeled “E”. Estimated error is not shown here, but is more clearly illustrated in Figure 2 and in the Supporting Information. The Solana equation is meaningless for the hard sphere and is omitted from that subfigure.
Figure 2: Deviations of the state functions from the simulation data for the sphere and 14 polyhedra. We show the relative difference for the virial equation $Z_{\text{VEOSS}}$ (blue, "V", Equation 2), the free volume EOS $Z_{\text{FV8}}$ (orange, "F", Equation 4), the modified Solana EOS $Z_{\text{Solana8}}$ (green, "S", Equation 5), and the exponential approximant $Z_{\text{EAS8}}$ (red, "E", Equation 8), each normalized to the simulation data, shown in gray. Estimated uncertainty in the vertical axis is represented by the one-sigma filled regions. The width of the horizontal gray line reflects estimated simulation uncertainty. The width of the EOS plot traces includes uncertainty propagated from simulation due to the normalization, dominating other error sources at low densities.
Figure 3: Convergence of the $j^{th}$ order equations of state for selected shapes at $\alpha = 1.18$, $\alpha = 1.97$, and $\alpha = 2.85$. We show the absolute difference from NpT simulation data for the virial equation $Z_{\text{VEOS}j}$ (Equation 2), the free volume EOS $Z_{\text{FV}j}$ (Equation 4), the modified Solana EOS $Z_{\text{Solana}j}$ (Equation 5), and the exponential approximant $Z_{\text{EA}j}$ (Equation 8), plotted versus packing fraction. The log–log scale emphasizes the nature of the dominant error terms. For ease of visualization, error bars are omitted and data are connected by lines to aid the eye. Since the vertical axis shows an absolute value, apparent poles in some graphs occur after an EOS has begun to diverge in the opposite direction from its accumulated error, re-intersecting the simulation data. Horizontal axis scale is adjusted for each shape to allow maximal detail. Plots for the remaining shapes are included in the Supporting Information.
Table 2: Higher reduced virial coefficients $B_k$ of the sphere and 14 polyhedra. Sphere virial coefficients are analytic to $B_4$. All other virial coefficients are determined numerically.

<table>
<thead>
<tr>
<th>shape</th>
<th>$B_3$</th>
<th>$B_4$</th>
<th>$B_5$</th>
<th>$B_6$</th>
<th>$B_7$</th>
<th>$B_8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. sphere</td>
<td>10.</td>
<td>18.364768</td>
<td>28.2244(1)</td>
<td>39.8151(9)</td>
<td>53.341(2)</td>
<td>68.54(1)</td>
</tr>
<tr>
<td>2. truncated octahedron</td>
<td>12.84591(4)</td>
<td>26.2284(2)</td>
<td>43.672(1)</td>
<td>64.387(6)</td>
<td>85.87(4)</td>
<td>102.4(3)</td>
</tr>
<tr>
<td>3. rhombic dodecahedron</td>
<td>13.47750(4)</td>
<td>27.8331(2)</td>
<td>46.194(1)</td>
<td>66.904(7)</td>
<td>86.98(4)</td>
<td>102.3(3)</td>
</tr>
<tr>
<td>4. truncated cube</td>
<td>15.06275(4)</td>
<td>32.0594(3)</td>
<td>52.559(1)</td>
<td>69.522(9)</td>
<td>71.01(6)</td>
<td>46.5(5)</td>
</tr>
<tr>
<td>5. 90% truncated tetrahedron</td>
<td>16.74906(5)</td>
<td>36.4986(3)</td>
<td>58.887(2)</td>
<td>72.34(1)</td>
<td>62.93(9)</td>
<td>31.2(8)</td>
</tr>
<tr>
<td>6. pentagonal prism</td>
<td>17.01593(5)</td>
<td>37.9864(3)</td>
<td>64.318(2)</td>
<td>85.53(1)</td>
<td>80.73(10)</td>
<td>23.4(8)</td>
</tr>
<tr>
<td>7. hexagonal prism</td>
<td>17.01369(5)</td>
<td>37.5649(3)</td>
<td>62.642(2)</td>
<td>82.87(1)</td>
<td>81.63(10)</td>
<td>38.2(8)</td>
</tr>
<tr>
<td>8. octahedron</td>
<td>17.00537(5)</td>
<td>36.9035(3)</td>
<td>58.149(2)</td>
<td>67.07(1)</td>
<td>49.9(1)</td>
<td>17.6(8)</td>
</tr>
<tr>
<td>9. cube</td>
<td>18.30341(5)</td>
<td>41.8485(4)</td>
<td>70.709(2)</td>
<td>88.33(2)</td>
<td>63.5(1)</td>
<td>$-$37.1(1)</td>
</tr>
<tr>
<td>10. truncated tetrahedron</td>
<td>19.19187(6)</td>
<td>43.5694(4)</td>
<td>70.297(3)</td>
<td>79.02(2)</td>
<td>41.4(2)</td>
<td>$-$67.1(1)</td>
</tr>
<tr>
<td>11. triangular prism</td>
<td>25.24793(8)</td>
<td>61.7590(6)</td>
<td>94.874(5)</td>
<td>60.08(4)</td>
<td>$-$136.0(4)</td>
<td>$-$526.4(4)</td>
</tr>
<tr>
<td>12. triangular dipyramid</td>
<td>26.92203(8)</td>
<td>62.4752(7)</td>
<td>78.641(6)</td>
<td>5.06(5)</td>
<td>$-$193.0(5)</td>
<td>$-$355.6(6)</td>
</tr>
<tr>
<td>13. square pyramid</td>
<td>30.15558(9)</td>
<td>74.2408(8)</td>
<td>94.432(7)</td>
<td>$-$27.56(7)</td>
<td>$-$375.4(8)</td>
<td>$-$697.9(9)</td>
</tr>
<tr>
<td>14. tetrahedron</td>
<td>33.0247(1)</td>
<td>80.7475(10)</td>
<td>85.029(9)</td>
<td>$-$90.60(9)</td>
<td>$-$325.1(1)</td>
<td>$-$200.1(10)</td>
</tr>
<tr>
<td>15. obtuse golden rhombohedron</td>
<td>47.9196(2)</td>
<td>117.349(2)</td>
<td>13.20(2)</td>
<td>$-$676.2(3)</td>
<td>$-$1257.4(0)</td>
<td>1910.6(0)</td>
</tr>
</tbody>
</table>
Table 3: Derived free volume coefficients $a_k$ of the sphere and 14 polyhedra. Values for $a_2$ are analytic for all shapes shown. Other coefficients are calculated by matching terms in the power series in $\eta$ to the numerically calculated virial coefficients.

<table>
<thead>
<tr>
<th>shape</th>
<th>$a_2$</th>
<th>$a_3$</th>
<th>$a_4$</th>
<th>$a_5$</th>
<th>$a_6$</th>
<th>$a_7$</th>
<th>$a_8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. sphere</td>
<td>3.0</td>
<td>3.0</td>
<td>-0.6352316</td>
<td>-0.23462(10)</td>
<td>1.34058(40)</td>
<td>-2.4782(23)</td>
<td>3.180(14)</td>
</tr>
<tr>
<td>2. truncated octahedron</td>
<td>3.5511711</td>
<td>4.743567(36)</td>
<td>0.344145(91)</td>
<td>-1.37116(43)</td>
<td>1.6094(23)</td>
<td>-3.564(14)</td>
<td>3.984(87)</td>
</tr>
<tr>
<td>3. rhombic dodecahedron</td>
<td>3.6742346</td>
<td>5.129036(38)</td>
<td>0.42328(10)</td>
<td>-1.97068(49)</td>
<td>1.8630(28)</td>
<td>-3.084(17)</td>
<td>4.53(11)</td>
</tr>
<tr>
<td>4. truncated cube</td>
<td>3.9644254</td>
<td>6.133901(43)</td>
<td>0.76447(13)</td>
<td>-4.15968(68)</td>
<td>0.5151(40)</td>
<td>-1.769(27)</td>
<td>9.35(18)</td>
</tr>
<tr>
<td>5. 90% truncated tetrahedron</td>
<td>4.2670168</td>
<td>7.215030(48)</td>
<td>1.05248(17)</td>
<td>-6.68128(91)</td>
<td>0.7410(59)</td>
<td>2.821(41)</td>
<td>10.56(30)</td>
</tr>
<tr>
<td>6. pentagonal prism</td>
<td>4.2928988</td>
<td>7.430131(48)</td>
<td>1.81730(17)</td>
<td>-5.70339(91)</td>
<td>-0.8914(60)</td>
<td>-2.926(42)</td>
<td>11.55(31)</td>
</tr>
<tr>
<td>7. hexagonal prism</td>
<td>4.3094011</td>
<td>7.394892(49)</td>
<td>1.45205(17)</td>
<td>-5.77281(93)</td>
<td>0.7160(62)</td>
<td>-2.899(44)</td>
<td>8.19(32)</td>
</tr>
<tr>
<td>8. octahedron</td>
<td>4.3189880</td>
<td>7.367391(49)</td>
<td>0.84436(17)</td>
<td>-7.70900(96)</td>
<td>0.9040(62)</td>
<td>5.809(45)</td>
<td>12.25(33)</td>
</tr>
<tr>
<td>9. cube</td>
<td>4.5</td>
<td>8.303408(52)</td>
<td>2.43827(20)</td>
<td>-7.8650(11)</td>
<td>-3.2600(75)</td>
<td>-0.268(55)</td>
<td>16.48(42)</td>
</tr>
<tr>
<td>10. truncated tetrahedron</td>
<td>4.6692106</td>
<td>8.853451(56)</td>
<td>2.00141(22)</td>
<td>-10.5066(13)</td>
<td>-1.3440(92)</td>
<td>5.172(70)</td>
<td>3.45(55)</td>
</tr>
<tr>
<td>11. triangular prism</td>
<td>5.5801270</td>
<td>13.087678(75)</td>
<td>4.75562(38)</td>
<td>-25.9955(27)</td>
<td>-17.281(22)</td>
<td>31.72(20)</td>
<td>43.8(19)</td>
</tr>
<tr>
<td>12. triangular dipyradoid</td>
<td>5.9220598</td>
<td>14.077909(83)</td>
<td>1.47527(45)</td>
<td>-36.4161(34)</td>
<td>0.995(31)</td>
<td>70.05(30)</td>
<td>18.6(30)</td>
</tr>
<tr>
<td>13. square pyramid</td>
<td>6.3040560</td>
<td>16.547463(92)</td>
<td>4.68620(55)</td>
<td>-49.8136(44)</td>
<td>-23.344(42)</td>
<td>131.14(42)</td>
<td>62.3(45)</td>
</tr>
<tr>
<td>14. tetrahedron</td>
<td>6.7037158</td>
<td>18.61728(10)</td>
<td>3.78451(67)</td>
<td>-69.6277(57)</td>
<td>-1.000(58)</td>
<td>329.22(62)</td>
<td>-222.1(69)</td>
</tr>
<tr>
<td>15. obtuse golden rhombohedron</td>
<td>8.5595086</td>
<td>29.80059(16)</td>
<td>1.2689(14)</td>
<td>-205.921(16)</td>
<td>-1.13(20)</td>
<td>1313.4(28)</td>
<td>-785.4(40)</td>
</tr>
</tbody>
</table>
References


Equations of state for polyhedra from virial coefficients through $B_8$