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We report results of calculations of the second through sixth virial coefficients for four prototype
Lennard-Jones !LJ" mixtures that have been the subject of previous studies in the literature. Values
are reported for temperatures ranging from T=0.6 to T=10.0, where here the temperature is given
units of the LJ energy parameter of one of the components. Thermodynamic stability of the mixtures
is studied using the virial equation of state !VEOS" with the calculated coefficients, with particular
focus on characterizing the vapor-liquid critical behavior of the mixtures. For three of the mixtures,
vapor-liquid coexistence and critical data are available for comparison at only one temperature,
while for the fourth we can compare to a critical line. We find that the VEOS provides a useful
indication of the presence and location of critical behavior, although in some situations we find need
to consider “near-miss” critical behavior, where the classical conditions of criticality are nearly but
not exactly satisfied. © 2009 American Institute of Physics. #DOI: 10.1063/1.3148379$

I. INTRODUCTION

Reliable prediction of the properties of mixtures is one
of the more important and unresolved challenges in chemical
thermodynamics. Most material systems of practical interest
are mixtures of two or more species and the vast space of
components and proportions that are possible in the formu-
lation of mixtures precludes any comprehensive experimen-
tal characterization. Thus prediction of mixture properties
from some type of model is an essential element of any effort
to design and manipulate processes and products.

Often mixtures do not behave in a way that simply in-
terpolates the pure-component behaviors and, to capture the
key elements that give rise to nontrivial !i.e., nonideal" be-
haviors, it is necessary to incorporate some characterization
of the molecular features of the component substances. Ex-
amples of successful treatments that do this include SAFT
!Ref. 1" and COSMO-RS and its derivatives.2 Both of these
approaches are proving useful in characterizing and predict-
ing mixture behavior. Molecular simulation is another tool
that can be effective in describing mixture properties using
molecular principles.3 Unlike “engineering” approaches such
as SAFT, simulation admits the use of arbitrarily realistic
molecular models, although in practice relatively simple
models are employed to minimize the computational ex-
pense. This expense makes simulation unwieldy as a design
tool, but on the other hand it is extremely versatile as it is, in
principle, capable of providing almost any thermophysical
property of interest under a very broad range of conditions.

Significant effort has been put into understanding and
cataloguing the “global phase diagram,”4,5 which is a map of
all the significant phase behaviors exhibited by a mixture,
considering not only the thermodynamic state, but also the
parameters of the model. Mixtures of just two components
can exhibit a very broad range of phenomena, involving vari-

ous combinations or intersections of criticality, multiphase
equilibria, azeotropy, immiscibility, and so forth. A compre-
hensive characterization of the behaviors can be performed
only with an analytic model, in which derivatives and roots
can be found through analysis and numerical methods. Ex-
periment and even molecular simulation do not lend them-
selves easily to this type of study, so to make further progress
it can be especially valuable to have molecular-based ana-
lytic models of the thermodynamic behavior of mixtures.

The virial equation of state !VEOS" combines some of
the appealing features of engineering models and molecular
simulation. It is a density expansion written with respect to
an ideal-gas reference, and while any thermophysical prop-
erty can be expressed in such a series it is the pressure via
the VEOS that is most commonly studied and applied. The
VEOS is written as follows:6

!P/" = 1 + B2" + B3"2 + B4"3 + ¯ , !1"

where P and " are the pressure and number density, respec-
tively, !=1 /kT is the reciprocal temperature in energy units,
and Bn is the nth virial coefficient, which is independent of
density. Obviously the VEOS has an analytic form that is
readily manipulated and provides numerical results very rap-
idly, given values of the coefficients. The virial coefficients
connect directly to a molecular model and because it is based
on knowledge of interactions between only a few molecules
at a time, the VEOS can accommodate more complex, real-
istic models than typically used in molecular simulation. Of
course it suffers also from the significant limitation that it
applies only at low density, but the question of how low the
density must be for the virial equation to be relevant has not
been addressed in a comprehensive way. This is largely due
to the difficulty of calculating high-order virial coefficients,
which requires evaluation of many-dimensional integrals
over translational, rotational, and internal degrees of freedom
of n molecules for the coefficient Bn. Recent advances permit
the calculation of coefficients up to at least n=5 for multi-a"Electronic mail: kofke@buffalo.edu.
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atomic molecules without much difficulty,7–10 so we are po-
sitioned to investigate the applicability of the VEOS for a
broader range of systems. In the present work we examine
application to mixtures. Mixture virial coefficients are given
exactly as a mole-fraction weighted sum of coefficients in-
volving n molecules in various combinations of the corre-
sponding species. Thus for example, in two-component mix-
tures, B2 and B3 are

B2 = y1
2B20 + 2y1y2B11 + y2

2B02,
!2"

B3 = y1
3B30 + 3y1

2y2B21 + 3y1y2
2B12 + y2

3B03,

where yk is the mole fraction of species k, labeled 1 or 2. The
coefficients with multiple numerals in their subscripts repre-
sent specific species combinations—the first and second sub-
scripts indicate the number of molecules of species 1 and 2,
respectively, which interact in defining the coefficient.

Vega11 performed some of the most ambitious calcula-
tions of mixture virial coefficients to date, as part of a larger
set of studies12–14 of virial coefficients of molecular systems.
His study examines multicomponent mixtures of hard
spheres, with as many as ten components. He also examines
hard-sphere chains,11,12 computing coefficients up to B4 for
chain lengths of as much as 100 using an approach in which
the different conformations of the chains are viewed as dif-
ferent components of a mixture. Vega advocates a method
that calculates the full mixture coefficients Bn at specified
compositions, pointing out that if this is done for a sufficient
number of mole fractions, one can invert Eq. !2" to deter-
mine the elementary coefficients Bij. Apart from this work,
high-order virial coefficients for mixtures focused on simple
potentials. This includes studies of the Gaussian model,15

hard spheres,16,17 and hard-sphere and square-well
mixtures.17 Low-order virial coefficients have been deter-
mined for some more complex models. Multiple studies of
mixture virial coefficients have been performed in the con-
text of solubility in supercritical fluids, which has signifi-
cance in relation to some separation processes.18–20 In vari-
ous cases the virial coefficients in these studies are given by
Taylor-series expansion of an analytic equation of state, em-
pirical correlations, or evaluation of cluster integrals using a
model potential. The focus is on behavior at high dilution
and the physical quantity of interest is the solute chemical
potential. Often it is assumed in these applications that the
solvent-phase volumetric properties are given and that other
properties related to the solute !e.g., the vapor pressure in its
pure condensed form" are known. It is found that the virial
equation truncated to third order in the density is inadequate
for the purpose, particularly in the !typical" case where the
molecular size of the solute is somewhat larger than the
solvent.20 However, significant improvement is seen when
the fourth-order term is added,18 so there is some motivation
to pursue higher-order terms.

In the present study we examine the ability of the virial
expansion to describe volumetric and stability properties of
mixtures. We apply VEOS to Lennard-Jones !LJ" models
where simulation data for mixture vapor-liquid coexistence
are available. We are particularly interested in the ability of
VEOS to predict or indicate the location of the critical point.

It is difficult to obtain such data by molecular simulation as
a function of composition, so we do not have much to com-
pare.

In the Sec. II we describe the models and briefly review
the methods used to calculate the virial coefficients and iden-
tify stability limits. Then in Sec. III we present and discuss
results before concluding in Sec. IV.

II. MODELS AND METHODS

A. Models

The LJ mixtures that we examined in this study are sum-
marized in Table I. All are two-component mixtures. In this
table and in all that follows, except where explicitly indi-
cated otherwise, all quantities are made dimensionless by the
species-1 LJ size and energy parameters, #11 and $11. The
systems labeled I, II, and III were examined previously and
their vapor-liquid equilibrium !VLE" behavior has been re-
ported in two independent studies.21,22 Mixture I is a sym-
metric mixture in which the unlike interactions are weaker
than the like interactions, so it displays positive deviations
from ideal mixing. In mixture II the energy parameter is the
same for all pairs, but the atoms are different sizes and the
cross interaction is a simple average of like interactions.
Mixture III is a somewhat conventional case of species dif-
fering in both size and energy parameters, with Lorentz–
Berthelot mixing rules. It is notable in having one compo-
nent supercritical at the conditions studied previously, so
there is a known critical point found in the pressure-
composition plane. Mixture IV was examined in a more re-
cent study23 and it has atoms of the same size but with dif-
ferent energy parameters. For this system data are known for
the critical line in pressure-temperature space joining the
critical points of the two pure substances.

B. Thermodynamic stability

One of the interests in this study is to examine the limits
of thermodynamic stability as given by the virial equation for
the mixtures and, additionally, to locate the critical point. We
can compare the stability limits to the known VLE phase
envelope. A meaningful stability limit will lie above the dew-
point pressure of the vapor; this test can give us a rough
indication of the ability of the VEOS to describe the gas-
phase behavior in this region. We can compare critical points
with simulation data for two of the model mixtures.

The stability of a system against separation into more
than one thermodynamic phase is analyzed by examining the

TABLE I. Parameters for the LJ mixtures examined in this work. For all
mixtures, the species-1 size and energy parameters #11 and $11 are unity and
provide the length and energy scales for the system. The table lists the
unlike and species-2 size and energy parameters for the four mixtures in
units of the species-1 parameters.

Mixture #12 #22 $12 $22

I 1.0 1.0 0.75 1.0
II 0.885 0.769 1.0 1.0
III 0.884 0.768 0.773 0.597
IV 1.0 1.0 2−1/2 0.5
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convexity of the free energy function. There are many
equivalent ways to express the conditions of thermodynamic
stability and the choice is a matter of convenience. The den-
sity and mole fractions are dependent variables in the VEOS,
so it is appropriate to work with the Helmholtz representa-
tion, for which stability requires24

− % #%1

#N1
&

T,V,N2

% #P

#V
&

T,N1,N2

− % #P

#N1
&

T,V,N2

2

& 0. !3"

Through standard manipulation of derivatives, we can con-
vert this to a form in which derivatives are taken with respect
to the density and species-1 mole fraction, which are the
variables appearing in the VEOS. In these terms, stability
can be expressed as
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& −
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Apart from additive terms that do not depend on density or
composition, the chemical potential according to the VEOS
is25 !written here for species 1 of a binary mixture"

!%1 = ln!y1"" + 2"!y1B20 + y2B11"

+ 3
2"2!y1

2B30 + 2y1y2B21 + y2
2B12"

+ 4
3"3!y1

3B40 + 3y1
2y2B31 + 3y1y2

2B22 + y2
3B13" + ¯ .

!5"

At a spinodal the limit of stability is reached and the inequal-
ity given above is instead satisfied as an equality. The locus
of such points traces a spinodal curve, which can end at a
stable point—the critical point—which further satisfies24

% #2%1

#N1
2 &

T,P,N2

= 0. !6"

When this is cast in the Helmholtz representation and put in
terms of variables and path convenient for application to the
VEOS, we have

!"%yy − Pyy" + '!Py
2 − 3!1 − y1"PyyPy" + '2!1 − y1"

(!3"Py
2Py" − 2Py

3" − '3!1 − y1""2Py
3P"" = 0. !7"

Here, the subscripts indicate partial derivatives taken with
respect to y !'y1" and/or "; also ''!#" /#P" /"
= #"!#P /#""$−1.

C. Evaluation of virial coefficients

The virial coefficients are given in terms of cluster inte-
grals involving interactions among n molecules for the coef-
ficient Bn.26 The coefficient B2 is

!8"

and B3 and B4 are !for pairwise-additive potentials"

!9"

!10"

while B5 is a sum of ten integrals each involving five mol-
ecules. In the integrals, f ij =exp!−!uij!rij""−1 is the Mayer
function, where uij is the pair potential between molecules
labeled i and j. For a spherically symmetric potential, this is
a function only of the separation rij, as indicated. The points
joined by lines are the conventional representation26 of clus-
ter integrals in terms of field points each representing the
integral of a molecule over the volume and bonds represent-
ing the Mayer functions f ij defined on the separation between
the two points it joins.

Mayer-sampling Monte Carlo !MSMC" !Ref. 7" is a gen-
eral approach to calculation of the cluster integrals in which
the configurations of the molecules are sampled according to
a Markov process, much as is done in a standard Metropolis
Monte Carlo !MC" simulation.3 Configurations are weighted
according to the absolute value of the Mayer-function inte-
grand, or sum of integrands for coefficients Bn, n&3 that are
given in terms of more than one cluster integral. The inte-
grals are calculated using ideas derived from methods used
to compute the free energy.27 In most cases we employ over-
lap sampling with Bennett’s optimization,28 for which the
working equation in MSMC becomes9

)!T" = )0
(*/+)+/(*os/+)+

(*0/+)+0/(*os/+0)+0
. !11"

Here we use ) to represent a general cluster integral or virial
coefficient, * is the corresponding integrand !or sum of inte-
grands" needed for its calculation, + is the function used to
weight the sampling of configurations, the subscript o indi-
cates a value for a known reference system, and the angle
brackets specify an ensemble average weighted by + or +0.
Also *os is the overlap function, given in terms of the target
and reference integrands as

*os =
**0****

,**0* + ***
, !12"

where , is a parameter selected to optimize the convergence
of the calculation. Additionally, the distribution of computa-
tional effort expended between sampling the + and +0 sys-
tems is balanced to ensure that their marginal contribution to
the stochastic error of the result is equalized. As a reference
system we use hard spheres of diameter equal to 1.5 times
the LJ #11 of the sampled system. The reference integrand *0
is the same function as * but with the hard-sphere potential,
and the sampling weights are just the absolute value of the
integrand, += ***.

Mixture virial coefficients are given by cluster integrals
similar to those above for pure substances, except that we
must consider variations in which the points are different
molecular species. Thus, for example, the unlike-species co-
efficient in B2 is represented

!13"

where the square is used to represent species 2. One of the B3
coefficients is
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!14"

Each f-bond is defined as appropriate to the species of the
two points it joins. We need not explicitly consider permuta-
tions of the B3 cluster integrals because they are mathemati-
cally equivalent—for a given number of species 1 and 2 in
the cluster, no matter how they are assigned to the points, the
value of the integral represented by the cluster is the same.
However, when we consider the mixture cluster integrals in-
volving four molecules, we must consider the permutations
and their weights inasmuch as some of the permutations cor-
respond to mathematically distinct integrals. We found it
convenient to do this in the following manner. For coefficient
Bij we generate all of the diagrams that appear in the expres-
sion for the single-component cluster Bn, n= i+ j, and for
each diagram we assign i of the points to be species 1 and the
remaining j to be species 2. For each of these “base” clus-
ters, we generate all topologically distinct clusters !consider-
ing the points as distinguishable" obtained by permuting the
points in the cluster, with no regard to the species identity of
the points; equivalently we can think of this as permuting the
bonds while keeping the species-blind structure of the cluster
unchanged. For example, the coefficient B22 is evaluated by
summing the following clusters !allowing here the points to
be made distinguishable by their position as drawn"

!15"

Although some of the permutations are isomorphs that evalu-
ate to the same value when the integrations are performed,
for our calculations we treat all of these permutations as
distinct. For any given configuration the molecules can be
distinguished by their spatial coordinates, and otherwise, iso-
morphic diagrams will have distinct values for that configu-
ration. So the calculation of separate averages for isomorphs
is not wasteful because they do each add information that is
!at least partially" independent. Note in this example that the
elementary coefficient B22 is multiplied by a factor of 6 when
combined to compute the full coefficient B4 as in Eq. !2".
One might adopt a convention in which this factor is ab-
sorbed in the elementary coefficient, which would cause the
expression above to be multiplied by 6. This convention is
used in Ref. 11, for example, so one should take care when
making such comparisons.

This describes our procedure for generating the diagrams
whose sum defines * for the calculation of a particular coef-
ficient Bij. With all permutations summed as described
above, there is no need to include any other symmetry mul-
tipliers. We compute B22 and similar terms by evaluating the
sum of clusters above via a single MSMC simulation. We do
not calculate each diagram separately, because they all are
multiplying the same factor, y1

2y2
2"4; the separate values are

not needed to apply the mixture VEOS. The coefficient mul-
tiplying the entire sum is −!n−1" /n!.

We evaluated coefficients for temperatures ranging from
T=0.6 to 10.0. Temperatures were selected in this interval as
needed to provide a good representation of the behavior. An
interpolation scheme described elsewhere29 was used to
evaluate coefficients at temperatures between those where
Mayer sampling calculations were performed.

D. Simulation details

MSMC simulations are performed7 in an infinite volume
with no periodic boundaries and no truncation of the poten-
tial. One molecule is fixed at the origin !effecting the divi-
sion by V in the formulas above" and the vanishing of + at
large separations ensures that none of the molecules stray too
far from it. For simulations involving three molecules, we
performed a separate simulation of 109 steps !where a step
represents an attempted MSMC trial" for each mixture coef-
ficient; for coefficients involving four molecules, we per-
formed five independent simulations; for coefficients involv-
ing five molecules, we performed eight independent
simulations. For coefficients involving six molecules, we
performed 10–40 simulations of length 108 steps. The vari-
ance of these independent simulations was used to compute
confidence limits on the results. We note that simulations of
this length may tax the ability of a random number generator
to produce uncorrelated random deviates, which can intro-
duce errors in unanticipated ways, so one should !as always"
take care to ensure that the random number generator gov-
erning the MC process is state-of-the-art. The period of the
generator used in this work is about 1014.

Virial coefficients up to B5 for pure species 1 were taken
from Sun and Teja,30 while B6 was calculated from MSMC
simulations.31 Pure species-2 virial coefficients are taken
from the same sources, with the temperature scaled by $22

and the coefficient itself scaled by #22
3!n−1". For mixtures

where $22 was not 1, we then obtained pure species-2 virial
coefficients at the desired temperatures by interpolation.29

Similarly, B12 was obtained by scaling temperature by $12
and the coefficient by #12

3 .

III. RESULTS AND DISCUSSION

The expression for the composition-dependent virial co-
efficient Bn for a binary mixture is given in terms of !n+1"
composition-independent coefficients Bij, so the full descrip-
tion of the virials B2 to B6 requires evaluation of 25 Bij
coefficients. We did this for four model mixtures, calculating
each for about ten temperatures. Thus we performed calcu-
lations of approximately 1000 coefficients. Space does not
permit us to present all of these data, even graphically, so we
give here only representative results for mixture I; the com-
plete set of data is available in electronic form.32 These data
are presented in Fig. 1, where we plot the Bij coefficients
appearing in the virials up to B6. We observed that the mix-
ture coefficients are shifted to the left relative to the pure-
species coefficients, which is expected since the mixture ep-
silon should shift the coefficient behavior to lower
temperature.

Several of the following figures present spinodal maps.
These plots show in the y1-" plane the essential-stability lim-
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its, i.e., the locus of point for which Eq. !4" is satisfied as an
equality. We present these curves for temperatures ranging
from subcritical to supercritical. At each temperature curves
are given for the virial series including terms up to B4
!VEOS4", B5 !VEOS5", and B6 !VEOS6", respectively, to
provide information about the degree to which the VEOS is
converged at various conditions. To construct these maps, we
start at a density and composition where the mixture is stable
and then vary density or composition until the spinodal cri-
terion, Eq. !4" !as an equality", is satisfied; this point is noted
and used to construct the spinodal line. This process is then
repeated with different starting points until we identify a
point where the critical criterion, Eq. !7", is also satisfied and
the spinodal line is terminated at that point !some exceptions
to this procedure for mixtures III and IV are discussed be-
low".

Let us first consider mixture I. Because the pure-species
vapor pressures are equal and the unlike interactions promote
positive deviations from ideal mixing, the vapor pressure
curve goes through a maximum with pressure, ensuring an
azeotrope at y1=0.5. Spinodals for mixture I are given in Fig.
2. The curves are symmetric about y1=0.5, consistent with
the symmetry of the model parameters. The spinodals at
lower temperatures occur at lower densities, toward the left,
and convergence of VEOS is good. With increasing tempera-
ture the spinodal density increases, the curves move to the
right, and some separation is seen between the curves using

VEOS to different orders. Below T=1.16, for VEOS6 a spin-
odal density exists across the entire range of composition. At
this temperature a critical point—an azeotropic critical
point,5,33 in fact—emerges at the equimolar composition and,
as the temperature increases this critical point splits into two,
each following a sequence of points that terminate lines of
metastability that begin with the respective pure species. The
locus of all of these points form a line of critical points
symmetric about y1=0.5, beginning with the pure-species
critical points at T=1.31 !according to VEOS6" and dropping
continuously to a minimum at T=1.16. This behavior is plot-
ted in Fig. 3, which shows the critical line in the P-T plane.
The line exhibits a cusp at the azeotropic critical point, at
which the curve doubles back on itself, following identical
P-T paths back to each pure component. The cusp is an
artifact of the projection onto this plane; in the P-T-y1 space
the critical line is a smooth curve. We note in passing that
Munoz and Chimowitz33 have shown that at an azeotropic
critical point the condition !#P /#y1"T,"=0 will hold !except
in unusual cases" and we found that this is true in the case
discussed here !results not shown". This result is of particular
interest because it suggests that the VEOS can identify a
critical azeotrope even though it is not equipped to charac-
terize azeotropy in general. However the conclusiveness of
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FIG. 1. !Color online" Virial coefficients for mixture I for n=2–6. Values
are made dimensionless by the critical density of the pure LJ fluid !Ref. 23"
!"c=0.317". Mixture I is symmetric with respect to exchange of the species,
so some of the coefficients are identical, as indicated in the legends. Data are
presented on a sinh−1 scale. Calculated coefficients are plotted with their
67% confidence limits !which are often smaller than the line thickness" and
lines are drawn to join them using an interpolation scheme presented else-
where !Ref. 29".
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FIG. 2. !Color online" Mixture I spinodals in the composition-density plane.
Dotted lines are calculated from VEOS4, solid lines from VEOS5, and dot-
dashed lines from VEOS6. Each group of lines from left to right in the
figure corresponds to the indicated temperature !in units of $11 /k". Spinodal
lines terminate where the critical criterion #Eq. !7"$ is satisfied !even though
spinodal condition continues to be met at higher density". Black dot-dashed
line traversing figure from y1=0 to 1 at the far right is the line of critical
points according to VEOS6.
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FIG. 3. Critical line for mixture I in the pressure-temperature plane. Dotted
line !circles" is computed from VEOS4, solid line !squares" VEOS5, and
dot-dashed line !triangles" VEOS6. Open symbols at left correspond to
equimolar mixture and critical lines for each pure substance begin at the
right and trace identical curves !owing to the symmetry of the mixture".
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this result is muted by the fact that this equality is a neces-
sary consequence of the symmetry of the mixture and it
holds for the equimolar mixture at any condition.

MC simulation data are available, which permit us to
examine one of the spinodal isotherms in the context of
vapor-liquid coexistence data for the mixture.21,22 This com-
parison is presented in Fig. 4. The data are at T=1.15, which
is right in the vicinity of the temperature where a critical
point emerges at the equimolar composition !T=1.15 is su-
percritical according to VEOS5 and subcritical according to
VEOS6". The likelihood of critical phenomena existing in
the vicinity of the azeotrope at this temperature was noted in
previous simulation studies.21 The spinodals lie above the
established vapor-phase binodal, as they must, and are alto-
gether consistent with the available coexistence data. At
higher pressures the liquid exhibits a miscibility gap,21 but
this behavior cannot be captured with the virial treatment.

Spinodal maps for mixture II are shown in Fig. 5. For
this mixture the species differ only in their size parameters,
although the difference is considerable: The volume of a
species-1 particle is more than twice that of species 2. The
energy parameters are equal for all interactions and conse-
quently the range of critical temperatures is rather narrow.
The spinodals again start at low temperature toward the left
of the figure and shift to the right with increasing tempera-
ture. Considering that densities cut roughly in half when res-
caled by the species-2 diameters, the VEOS remains valid at
the high number densities explored in the lower portion of
the plot because this part corresponds to mixtures rich in
species 2.

Both pure substances have the same VEOS6 critical
point at T=1.31 and, at this temperature, the spinodals de-
tach from the pure-species axes at y1=0 and y1=1 at respec-
tive densities, which are in proportion to the molecular vol-
ume of each species. Interestingly, in doing this the spinodal
curve forms a closed loop, meaning that, after crossing the
first spinodal, further increase in density finds another spin-
odal that marks a boundary back into a stable phase. We are
doubtful however that this behavior is physically meaning-
ful, noting that the addition of B6 moves the high-density
branch of the loop to yet higher density, indicating that the
VEOS description is not well converged at the high-density
spinodal.

The critical line is presented in Fig. 6. The end points are
at the same temperature and because all pair interactions
have equal $ values, the range of temperatures traversed by
the line is quite narrow !the shift of the curve from VEOS5
to VEOS6 is greater than the range covered". The curve
moves with increasing pressure from species 1 to species 2,
ending at a value that, like the density, is in proportion to the
molecular volume. Starting from species 1, the slight de-
crease in the critical temperature shows that the addition of
smaller but equally energetic molecules to species 1 has the
effect of stabilizing the gas. This effect quickly reverses with
increasing species-2 mol fraction. From the other end, the
addition of larger but equally energetic molecules to pure
species 2 immediately destabilizes the gas. The projection of
the line onto the pressure- and temperature-composition
planes is shown in Fig. 7. The addition of B6 does introduce
a qualitative change in the shape of the curves, making them
noticeably more asymmetric.

Mixture III has a more conventional set of parameters,
with species differing in both size and energy parameters and
Lorentz–Berthelot mixing rules for the unlike parameters.
The estimation of critical points for this mixture suffers from
a complication that we did not see in the previous cases. For
some of the temperatures the spinodal line does not encoun-
ter a point where the critical stability criterion #Eq. !7"$ is
satisfied. Instead the derivative !#2%1 /#N1

2"T,P,N2
goes

through an extremum !a positive minimum or a negative
maximum" with respect to density before it can cross zero.
The derivative !#2%2 /#N2

2"T,P,N1
is an alternative indicator of

criticality and, on the spinodal, it necessarily has the opposite
sign from !#2%1 /#N1

2"T,P,N2
, and it too goes through an extre-
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FIG. 4. !Color online" Comparison of mixture I spinodal at T=1.15 to
established binodals !Ref. 22" at the same temperature. Dotted and solid
lines are computed from VEOS4 and VEOS5, respectively, and end where
the VEOS indicates a critical point; the dot-dashed line is computed from
VEOS6 and does not exhibit a critical point.
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mum, perhaps at a slightly shifted density. The behavior is
illustrated in Fig. 8. As the temperature is varied, these de-
rivatives shift and at some point hit the zero line, and do so
at the same density, indicating a valid critical point. As the
temperature is varied further, the extremum pushes through
the zero line, giving rise to two zero-line crossings and thus
two critical points. We do not ascribe any significance to the
higher-density critical point, because we expect the VEOS to
fail as it passes through the nonanalytic critical density, and
that its behavior beyond that point is not meaningful. On the
other hand, we consider the extremum in !#2%1 /#N1

2"T,P,N2
to

be notable and perhaps a tentative indicator of criticality that
fails to show the bona fide critical point due to the VEOS

being insufficiently converged. Thus in the discussion that
follows we do not present the higher-density critical point of
a pair, but we do indicate points where !#2%1 /#N1

2"T,P,N2
ex-

hibits an extremum without crossing zero, which we will call
a “near-miss” critical point.

Mixture III spinodal maps are drawn in Fig. 9. The
aforementioned near-miss critical points according to
VEOS4 and VOES5 are marked with an ( symbol and the
spinodals are drawn to continue through them !unlike the
other cases, where we terminate the spinodal line when the
classical conditions of criticality are met". For VEOS6 we
draw the full critical line and indicate the near-miss critical
region with a thicker line !we do not draw the ( symbols for
VEOS6 to help minimize clutter in the figure". In Fig. 10 we
show these same spinodals in the pressure-composition plane
and we include a comparison to the available simulation data
for vapor-liquid coexistence in this mixture.22

Comparison to the established coexistence curves at T
=0.928 in Fig. 10 shows that the near-miss critical point
indicated by VEOS does indeed correspond well to a bona
fide critical point determined by detailed simulations. This
may be a fortunate coincidence, but it does provide some
support for the use of the near-miss criterion when trying to
estimate the location of critical points from the VEOS. On
the other hand, the behavior exhibited in Fig. 9 shows that
this approach introduces clear anomalies in the critical lines.
The discontinuous changes in the slope of the critical lines
seen in Fig. 9 occur because the zero-crossing criterion is
replaced by an extremum condition. The overall erratic shape
of the curve is perhaps connected to the sensitivity of the
critical density !an inflection point" to fine details in the
shape of the curve.

In mixture IV the species are the same size !like mixture
I" but have energy parameters that obey the conventional
geometric-mean mixing rule, $12= !$11$22"1/2 !like mixture
III". Again there is a considerable region in which only the
near-miss criterion for estimating the critical point is met.
The estimated critical line in the pressure-composition plane
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FIG. 7. Critical line for mixture II in pressure-composition !top" and
temperature-composition !bottom" planes. Dotted line !circles" is computed
from VEOS4, solid line !squares" VEOS5, and dot-dashed line VEOS6.

FIG. 8. Schematic of behavior exhibited by critical-point indicators in mix-
tures III and IV. Lines are the indicated second derivatives !in arbitrary
units" evaluated along the spinodals. The abscissa is a coordinate such as
density or mole fraction that measures movement along the spinodal line.
Along the spinodal, the two second derivatives are necessarily of opposite
sign. The “near-miss” condition occurs when lines turn away from zero
before crossing it. Two critical points emerge as temperature is varied. Fur-
ther changes in temperature may move the second critical point to very high
density or see it eliminated entirely.
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FIG. 9. !Color online" Mixture III spinodals in the composition-density
plane. Dotted lines are calculated from VEOS4, solid lines from VEOS5,
and dot-dashed lines from VEOS6. Each group of lines in the figure corre-
sponds to the indicated temperature !in units of $11 /k". Spinodal lines ter-
minate where the critical criterion #Eq. !7"$ is satisfied !even though spin-
odal condition continues to be met at higher density". The ( symbol
indicates the location of a near-miss critical point for VEOS4 and VEOS5,
and spinodal lines are drawn past them. Black dot-dashed line at far right is
the line of critical points according to VEOS6; the line is drawn thicker at
conditions where critical point is given by near-miss criterion !roughly be-
tween y1=0.01 and 0.6".
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is shown in Fig. 11. Results from VEOS5 and VEOS6 are in
good mutual agreement at lower mole fraction and differ
markedly from VEOS4, while at higher mole fractions,
VEOS6 departs from the other two. Established data23 from
molecular simulation are presented for comparison and
which, happily enough, show best !albeit imperfect" com-
parison with VEOS6. The simulation results were computed
using mixed-field finite-size scaling techniques that are
needed to accommodate the infinite correlation lengths en-
countered upon approach of the critical point. Given the
complications associated with true critical behavior, it is re-

markable to see such good agreement with the VEOS calcu-
lations, which are based on simulations of no more than six
molecules. It would certainly be more gratifying if we were
in all cases satisfying the true criteria of criticality in the
VEOS application, but at the same time we see that some-
thing of practical relevance can be taken from the approxi-
mate “near-miss” estimation. This result indicates that the
good comparison we saw also with mixture III may not have
been a coincidence.

IV. CONCLUDING REMARKS

Calculation of mixture virial coefficients is no more dif-
ficult than calculating the coefficients for the pure substance.
The only real complication is the expansion in the number of
coefficients needed to fully characterize the behavior. The
number of coefficients needed grows with the order of the
coefficient n and the number of component species c as
!n+c−1"! /n! / !c−1"! !notwithstanding any new symmetries
in the clusters". This increase is not a serious obstacle to
applications, recognizing that these coefficients can be com-
puted completely independently, so a corresponding increase
in available processors can directly remedy any complica-
tions.

Identification of criticality !i.e., the problem of locating
critical points and lines" is much easier to perform using an
analytic equation of state than via studies based on experi-
ment or molecular simulation. This is so a fortiori when
considering the behavior of mixtures, where the expansion of
thermodynamic state space introduces a qualitatively new
complication with the trial and error that is needed to con-
verge on the location of the critical point. Of course, both
experiment and simulation have the benefit of being, if per-
formed with sufficient care, capable of capturing the true,
nonanalytic features of the critical behavior. The VEOS, be-
ing an analytic equation, is inherently unable to capture the
effects of the nonclassical behavior that governs the near-
critical system. On the other hand, the VEOS is shown in this
work to be sufficiently effective in finding the location of the
critical point that it should be considered, if nothing else, as
a valuable tool for guiding experiment and simulation stud-
ies. Further improvements might be found in the use of
crossover methods,34 which have been employed in various
contexts to correct analytic models by introducing universal
scaling properties that fluids exhibit upon approach to a criti-
cal point. However in at least some of these methods, knowl-
edge of the location of the critical point is required as an
input.

Conclusions about the effectiveness of VEOS for this
purpose are only tentative, inasmuch as we studied here only
a quite simple model for molecular systems. Various studies
of pure-substance criticality with the VEOS shows that it can
be effective !particularly in connection to the critical tem-
perature, but less so with respect to the critical density" for
multiatomics, such as the normal alkanes8 and quadrupolar
diatomics,14 but application to water9,10 !and perhaps other
polar molecules" may require further developments. On the
other hand, we presently considered a variety of mixture
types within the LJ model and saw that the VEOS is effective
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FIG. 10. !Color online" Spinodals for mixture III in the pressure-
composition plane. Top: dotted lines are calculated from VEOS4, solid lines
from VEOS5, and dot-dashed lines from VEOS6. Each group of lines in the
figure corresponds to the indicated temperature !in units of $11 /k". Termina-
tion of lines and use of ( symbol is as in Fig. 9. Bottom: comparison of
mixture III spinodal at T=0.928 to established binodals !Ref. 22" at the
same temperature, with ( symbol indicating the near-miss critical point.
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are used where classical criterion #Eq. !7"$ is not satisfied, and critical line is
instead eliminated using near-miss critical condition. Symbols indicate tem-
peratures where the virial coefficients were given directly by the Mayer-
sampling calculations, and lines connecting them were computed using
virial coefficients given by interpolation of the measured coefficients !Ref.
29". In addition, the ( symbols indicate MC simulation data !Ref. 23".

224104-8 A. J. Schultz and D. A. Kofke J. Chem. Phys. 130, 224104 "2009!

Downloaded 10 Jun 2009 to 128.205.56.237. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



to a useful degree in application to all of them. Nevertheless
we do not find the introduction of the near-miss critical cri-
terion to be a satisfactory means to locate criticality in these
systems, even though it shows some effectiveness in this
task. Rather we would prefer to develop a reformulation of
the virial approach to increase its overall ability to describe
dense-gas PVT behavior, so that the correct conditions of
criticality can be applied to identify critical points in all
cases. This is a larger problem that merits further study and
development.

Apart from the application in connection to criticality,
the VEOS can be effectively coupled with molecular simu-
lation to develop efficient methods for evaluation of equilib-
ria of gases with liquids and solids. Methods such as Gibbs
ensemble MC !Ref. 35" and Gibbs–Duhem integration36 can
be combined with an analytic equation of state to yield hy-
brid methods that can be more versatile and efficient than the
approaches based on direct simulation of both phases.37 The
VEOS is ideally suited for this task because it is based on the
same model that is used in the molecular simulations.

One of the most appealing features of the VEOS in ap-
plication to mixtures is its ability to capture rigorously the
composition dependence of the equation of state. Required of
course is a mixing rule for the intermolecular interactions,
but this is much less of a problem than contriving the same at
the level of thermodynamic-model parameters. If ab initio
methods can be brought to bear on this task, we may see
developed a route to first-principles prediction of mixture
critical points. Clearly much development is needed before
reaching this appealing goal.
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