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We consider ways to quantify the overlap of the parts of phase space important to two systems,
labeled A and B. Of interest is how much of the A-important phase space lies in that important to
B, and how much of B lies in A. Two measures are proposed. The first considers four total-energy
distributions, formed from all combinations made by tabulating either the A-system or the B-system
energy when sampling either the A or B system. Measures for A in B and B in A are given by two
overlap integrals defined on pairs of these distributions. The second measure is based on information
theory, and defines two relative entropies which are conveniently expressed in terms of the
dissipated work for free-energy perturbation !FEP" calculations in the A→B and B→A directions,
respectively. Phase-space overlap is an important consideration in the performance of free-energy
calculations. To demonstrate this connection, we examine bias in FEP calculations applied to a
system of independent particles in a harmonic potential. Systems are selected to represent a range
of overlap situations, including extreme subset, subset, partial overlap, and nonoverlap. The
magnitude and symmetry of the bias !A→B vs B→A" are shown to correlate well with the overlap,
and consequently with the overlap measures. The relative entropies are used to scale the amount of
sampling to obtain a universal bias curve. This result leads to develop a simple heuristic that can be
applied to determine whether a work-based free-energy measurement is free of bias. The heuristic
is based in part on the measured free energy, but we argue that it is fail-safe inasmuch as any bias
in the measurement will not promote a false indication of accuracy. © 2005 American Institute of
Physics. #DOI: 10.1063/1.1992483$

I. INTRODUCTION

An important application of molecular simulation1 is the
calculation of free-energy differences, which are required for
phase and reaction equilibria, solvation, binding affinity, sta-
bility, kinetics, and so on. Free-energy methods can be
broadly categorized into density-of-states approaches and
work-based methods,2 though the line between these catego-
ries is not sharp. Both approaches are in wide use, and as no
single technique is recognized as demonstrably superior for
all applications, the choice of which to apply to a given
problem is often a matter of personal preference or experi-
ence. All methods have their own idiosyncrasies and pitfalls,
and despite decades of development3–6 there remains a
strong need for more efficient and robust methods. Indeed,
the development and application of free-energy calculation
methods are expanding as a topic of great interest.7–10

The free energy of a system characterizes an unnormal-
ized distribution that is defined on the phase space of the
system. The domain of non-negligible parts of this distribu-
tion constitutes a subspace, and the free energy depends on
the “size” of this subspace, and on the weight accorded to
each point in it. Thus the difference in free energies between
two systems involves two subspaces of phase space, and to
measure this free-energy difference it is necessary to con-
sider both. It is not feasible to measure absolute free energies

directly !at least in the general case", so it is not possible to
consider these subspaces independently. While roundabout
ways to get a desired free energy may introduce other sys-
tems that circumvent the direct comparison, at some point a
free-energy difference between some two systems must be
evaluated, and at that time two phase-space subspaces must
be considered at once. Regardless of the method, the chal-
lenge in these calculations always stems from the fact that
these two spaces may be wildly different, perhaps, for ex-
ample, many orders of magnitude different in size, yet it is
necessary to perform a single simulation in which both are
adequately represented.

To address this difficulty it can be helpful to have a clear
conception of the nature of the phase spaces and how they
relate to each other in a geometric sense. The free-energy
difference provides some such information, but it is not in-
trinsically a statistic for the pair of subspaces taken together.
Rather it is formed simply as the difference between two
terms, each relating to just one of the subspaces. A free-
energy difference of zero, for example, could result when the
phase spaces are mutually exclusive just as when they fully
coincide. To understand the performance of a free-energy
calculation method it is necessary to know something about
how much overlap there is between the subspaces of the two
systems. The free-energy difference really says nothing
about this. The nature of this overlap is important because it
determines how easily both spaces can be sampled at once,a"Electronic mail: kofke@buffalo.edu
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and it can provide guidance when introducing constructs that
aim to bridge them or to promote sampling of both.

While we think that all free-energy methods can benefit
from consideration of phase-space overlap, our focus in the
present study is on work-based methods. Work-based meth-
ods are synthesized by the nonequilibrium work !NEW" for-
malism of Jarzynski,9 and encompass free-energy
perturbation4 !FEP" and thermodynamic integration,3 as well
as other standard methods.6,8,11 The primary pitfall in NEW
methods generally is that they can be highly prone to sys-
tematic errors. Consequently, in applying them one normally
sacrifices efficiency to gain a result that can be considered
accurate.

To provide context for our discussion we briefly review
the FEP method.4 FEP can be conducted in either of two
directions, and the working equations for each are

exp!− !"F" = exp!− !WA→B" A → B direction,
!1"

exp!+ !"F" = exp!− !WB→A" B → A direction.

Here "F=FB−FA is the free-energy difference between two
systems A and B, !=1/kT is the reciprocal temperature in
energy units, and WA→B=UB−UA is the work involved in
perturbing a given configuration from system A !for which
the energy is UA" to system B !of energy UB"; likewise,
WB→A=UA−UB. The overbar denotes the ensemble average
sampled in the corresponding reference system A or B. The
accuracy of a FEP calculation can depend greatly on the
direction in which the perturbation is performed. Any signifi-
cant inaccuracies in the results obtained from the two direc-
tions will be of opposite sign, with the calculation overesti-
mating the free-energy difference when performed in one
direction, while underestimating it in the other.12 Sometimes
the bias is symmetric, but often the magnitude of the inac-
curacy in one direction is very different from the other. It is
not unusual to be able to obtain a very good result with a
reasonable amount of sampling in one direction, while ob-
taining a result that is consistently inaccurate for any feasible
amount of sampling in the other direction. For more general
NEW methods, a systematic error is diminished to the extent
that the work process is performed reversibly.

In previous studies2,8,11,13,14 we examined the problem of
bias in NEW calculations and showed that the key consider-
ation influencing the accuracy is the overlap of the important
parts of phase space for the systems of interest. Typically
three overlap relations, subset, partial overlap, and nonover-
lap, correspond to different levels of difficulty when calcu-
lating the free energies and should be treated with different
staging methods.

Regarding direction, perturbations should always be per-
formed from a system of larger phase space to a system of
smaller phase space, and this rule should also be followed by
the successive stages during multistage perturbations or gen-
eral NEW calculations. Otherwise important contributions
will be omitted from the ensemble average, and inaccuracies
will occur. Above all, it is essential that any individual stage
of a work-based calculation be performed from one system
into another that is a phase-space subset of it.

In this paper, we attempt to quantify phase-space overlap
relations and use these measures to understand and identify
bias in the free-energy calculations. In Sec. II we review
phase-space overlap relations, and use FEP calculation as an
example to explain why they can help us understand inaccu-
racy in free-energy calculations. In Sec. III we introduce two
approaches to quantify phase-space overlap relations. In Sec.
IV we examine a model system to develop a quantitative
connection between phase-space overlap and bias in free-
energy calculations. We then conclude in Sec. V.

II. QUALITATIVE PHASE-SPACE OVERLAP
RELATIONS AND FEP CALCULATIONS

We first consider phase-space relations qualitatively.
Phase space # is !assuming a three-dimensional physical
space" the 6N-dimensional space formed from the 3N con-
figuration and 3N momentum components of all N atoms.
Free-energy calculations are usually concerned with only the
3N-dimensional configuration space !assuming momentum
contributions can be included analytically", and we will
present most of the discussion with this in mind. Thus each
point in phase space represents a unique configuration. The
important phase space of a system is the subset of the entire
phase space that makes significant contributions to the parti-
tion function. A specific definition of important phase space
is not needed in what follows, but to fix ideas it can be
helpful to present a definition. In the canonical ensemble the
weight of a configuration $!# depends only on its energy
via the Boltzmann factor exp#−!U!$"$, so it is possible to
compare and order the weight !importance" of any two con-
figurations. If we consider for system A some subset of con-
figurations #A, such that all configurations in #A have greater
weight than those configurations not in #A, then we could
define the important phase space #A, such that

%
#A

exp#− !U!$"$d$

%
#

exp#− !U!$"$d$

= f , !2"

where f is a value close to unity. Clearly the energy defines
the importance, such that all configurations of energy below
a cutoff will be important, and all above it will not.

Introducing the normalized total-energy distribution

p!U", the cutoff UA
max would satisfy &−%

UA
max

p!U"dU= f , and any
configuration with energy less than this would be considered
part of the important phase space. The distribution of ener-
gies is the product of the degeneracy &!U" and the Boltz-
mann factor exp!−!U", so a given configuration might be
“important” because it has a substantial weight !large Boltz-
mann factor", or because it is one of the relatively many
configurations having a low but non-negligible weight #large
&!U"$. The point of the important phase space is that it iden-
tifies those configurations that must be sampled well by a
free-energy algorithm in order to produce accurate results.

We compare two systems’ important phase spaces by
mapping them together in a single !schematic" phase-space
diagram. If the two systems differ in their Hamiltonian or
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some other constraints, but have an equivalent set of coordi-
nates !and, in particular, the same number of atoms", then
their phase spaces are of the same dimension, and we can in
principle easily compare their important phase-space regions.
If two systems differ in their number of atoms, for example,
system A contains N molecules and system B has !N+1"
molecules !so that the calculated free energy is exactly the
chemical potential", then the A configuration space has 3N
dimensions but B configuration space has 3!N+1" dimen-
sions !for a monatomic molecule". To enable them to be
mapped together we can instead view the two systems as
having different Hamiltonians, one in which the !N+1"th
molecule interacts as any of the others, and the other in
which it behaves as an ideal-gas particle with no interactions
with the other molecules. In both cases the molecules are
“there,” so the phase-space dimensions can be the same for
the two systems.

Without loss of generality we stipulate that the A-system
important phase space is always larger than the B-system
phase space if they are not equal !for brevity we will term
these the A phase space and B phase space". Then there are
three qualitative categories of relation that can be observed
for the two systems’ important phase-space regions, and they
are depicted in Fig. 1. We consider each in turn.

A. Subset relation

If system B’s important phase space constitutes a wholly
contained subset region of system A, we call it subset rela-
tion. Figure 1!a" gives a schematic picture of such a case. We
notice that the important phase-space regions of the two sys-
tems are related asymmetrically, and this is reflected in the
calculations performed in two directions.

1. A\B direction

When sampling in system A and perturbing into system
B, all the configurations that are important to system B can
be reached when sampling the important phase space of A.
This is the easiest case for free-energy calculations, and in
general calculations applied to it do not require special
schemes to connect A and B phase-space regions. In this case
FEP calculations can, with a feasible amount of sampling,
yield results that are limited more by precision than by ac-
curacy.

An exception for the A→B direction is the extreme sub-
set case. This describes the situation in which the B phase
space forms only a tiny subset region of the A phase space.
This case is often seen in particle-insertion free-energy cal-
culations, where it can be very hard for the randomly in-

serted molecule to be fitted into the phase without an overlap
!e.g., inserting a chain molecule into a dense phase". Gener-
ally it is possible for the A system to accommodate the new
molecule without a significant increase in energy, but this
requires a concerted movement of many molecules to make
room for the new one. This means that the configuration is
not outside of the A phase space, rather it is a part of it !albeit
a very small part". The amount of sampling required to ob-
tain an accurate result is inversely proportional to the frac-
tion that the B phase space occupies in the larger A phase
space, so in principle with sufficient sampling an accurate
result can be obtained in all cases. We refer to this as an
entropic sampling barrier.

2. B\A direction

If FEP calculation is performed in this direction, results
will be consistently inaccurate !almost" regardless of how
much sampling is performed. When sampling in the smaller
B phase space, the important configurations in the A phase
space outside the B oval will not be sampled, and these un-
reachable configurations can introduce large inaccuracies—
indeed, their contribution is inversely proportional to their
likelihood of being sampled. We refer to this as an energetic
sampling barrier.

B. Partial-overlap relation

Figure 1!b" gives a picture of an overlap relation. Here
there is only a partial overlap of the A and B phase spaces.
This means there will always be some amount of configura-
tions that are important to the other system but which are not
sampled, regardless of the direction taken for the perturba-
tion. Therefore results from both directions are not accurate.
The symmetry of the bias !for A→B vs B→A perturbation
directions" will reflect the symmetry of the relation between
the phase spaces. It is possible for both methods to give
results that are equally biased !in magnitude" and of opposite
sign, in which case averaging the two results will be an es-
timate better than either. On the other hand, the systems may
have a symmetry that approaches that of the subset relation
discussed above. In this case one result will be better than the
other, and averaging of the results is not prescribed. If, for
example, the A phase space encompasses most of the B
phase space, such that only a small amount of B region is
outside A but a large amount of A region is outside B, then
for an equivalent amount of sampling the A→B result will
be much closer to the correct value.

C. Nonoverlap relation

In this case there is no overlap region between the two
systems’ important phase spaces, as depicted in Fig. 1!c".
The problems are severe for FEP calculations, and single-
stage perturbations completely fail when conducted in either
direction. With energetically disfavored perturbations, almost
every configuration sampled in one system is not important
to the other system, thus none of them contributes to the
calculations. This is also the case in which histogram-based
free-energy calculation methods are prone to fail.

FIG. 1. Schematic depiction of phase-space overlap relations. The large
square represents all of phase space, and the circles indicate the regions
important to the A and B systems, as indicated. The cases shown are !a" the
subset relation, !b" partial overlap relation, and !c" nonoverlap relation.
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In summary, for successful perturbations the systems of
interest must have a subset relation, and the perturbation
must be performed in the direction from the system of a
larger phase space to a system of a smaller phase space
!which we call the insertion direction and label it A→B".
Subset relations are associated with entropic barriers !ex-
treme subset case" and can in principle be overcome with
enough sampling; overlap and especially nonoverlap rela-
tions are discouraged by energetic barriers and must be
treated by advanced work-based methods !multistage meth-
ods" instead of simple FEP calculations.

III. QUANTIFYING PHASE-SPACE OVERLAP

Phase-space overlap relations provide a useful concep-
tual framework to guide the application of free-energy cal-
culations. These ideas help us not only to understand the
difficulties of the calculations, but also to choose and design
the appropriate methods to perform free-energy calculations.
For this framework to be effective, it is essential to know the
phase-space overlap relation for a given system of interest. In
this section, we present two methods to quantify the systems’
phase-space overlap relations.

A. Total-energy distribution method

Energy is the key quantity characterizing the importance
of a configuration to a given system, so it is appropriate to
consider energy distributions when trying to understand
phase-space relations. Most obvious are the total-energy dis-
tributions, which we denote here by pAA!UA" and pBB!UB",
respectively, defined such that pAA!UA"dUA is the probability
that a system-A energy within dUA of UA would be observed
in a Boltzmann-weighted sampling of system A; likewise for
pBB!UB". A comparison of pAA!UA" and pBB!UB" is not very
informative, as they do not provide any connection between
the A and B systems.

One way to bring the systems together is to introduce the
cross distributions, pBA!UA" and pAB!UB", which describe the
likelihood to observe a configuration important to one sys-
tem, when sampling the other. More specifically,
pAB!UB"dUB is the probability that a configuration with
system-B energy within dUB of UB would be observed in a
Boltzmann-weighted sampling of system A; likewise
pBA!UA" is the probability density for observing a configura-
tion of energy UA !when defined according to system A"
while sampling system B.

To aid the discussion we introduce an alternative nota-
tion for the energy distributions: 'A(A) pAA!UA", 'A(B

) pBA!UA", 'B(A) pAB!UB", and 'B(B) pBB!UB", which is
slightly more concise, and makes clear which of the systems
is sampled and which system defines the dependence of the
tabulated energy on the configuration.

With these new distributions, we consider the two pairs

!a" B in A 'A(A ↔ 'A(B,
!3"

!b" A in B 'B(B ↔ 'B(A.

Pair !a" compares the A-energy distribution sampled in two
systems, and characterizes whether system B’s important

phase-space region is inside or outside that of system A. To
see this, consider a configuration generated when sampling
B. We are interested in knowing if this configuration is im-
portant to system A, and in effect we ask “is the system-A
energy of this configuration typical of the system-A energies
encountered when sampling system A itself?” To answer, we
compare this system-A energy to the distribution 'A(A. The
distribution of such energies UA for configurations sampled
in B then gives an overall picture of how much of system-B
phase space coincides with that of system A. Figure 2 shows
one such case, where the 'A(B distribution is on the right of
the 'A(A distribution. The overlap region between the two
distributions indicates some set of configurations that are en-
countered when sampling both systems, and thus this de-
scribes the overlap region of their important phase space.
The higher-energy levels that lie above the 'A(A distribution
but within the energy range of 'A(B distribution represent
configurations that are unimportant to the A system, but are
still in the B phase space. Thus the degree to which 'A(B lies
on or to the left of 'A(A indicates !loosely" the amount of the
B system in the A system. When 'A(B lies well to the left of
'A(A, then the B system preferentially accesses a small set of
configurations that are energetically favorable to A, but
which are entropically disfavored.

Comparison of the 'A(A and 'A(B distributions does not
provide sufficient information to determine the conjugate
question, regarding how much of the A system is in the B
system—just because system B accesses some configurations
with energies important to A does not mean it accesses all
such configurations. To tell the amount of A in B requires
comparison of the other pair, denoted !b" in Eq. !3". If 'B(A is
on the left of or coincides with 'B(B, then it tells that the A
phase space is inside the B phase space; and if 'B(A is on the
right of 'B(B, then A is outside B. Thus in combining the
information from two pair comparisons we can tell a sys-
tem’s overall phase-space overlap relation. For example, if B
is inside A and A is outside B, it is a subset relation; if B is
outside A and A is outside B, it is an overlap or nonoverlap
relation. The degree of overlap can be ascertained qualita-
tively by looking at how far away 'A(A and 'A(B or 'B(B and
'B(A are separated from each other.

We can define metrics that more quantitatively charac-

FIG. 2. Schematic illustration of total-energy distribution. The curve labeled
'A(A is the distribution of system-A energies observed when sampling sys-
tem A, while 'A(B is the distribution of system-A energies observed when
sampling system B.
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terizes the degree to which the complementary energy distri-
butions coincide. Considering that the order of the distribu-
tions on the energy axis is significant, an appropriate metric
will indicate if one distribution is to the right or left of the
other if they do not fully overlap. The following overlap
integrals satisfy this requirement:

!a" B in A KBA = 2%
−%

%

dUA1pAA!UA1"%
−%

UA1

dUA2pBA!UA2" ,

!4"

!b" A in B KAB = 2%
−%

%

dUB1pBB!UB1"%
−%

UB1

dUB2PAB!UB2" .

A picture describing one of the pair distributions is plotted in
Fig. 3, where the solid distribution represents the 'A(A !or
'B(B" distribution and the dotted lines represent the 'A(B !or
'B(A" distribution. We note three special or limiting cases: !a"
the two distributions exactly coincide, K=1; !b" the dotted
distribution is to the left of the solid distribution, 1'K'2,
with K=2 when the distributions are completely separated
this way !such as distributions 1 and 2 shown in Fig. 3"; and
!c" the dotted distribution is to the right of the solid distribu-
tion, 0'K(1, with K=0 when the distributions are com-
pletely separated this way !such as distributions 3 and 2
shown in Fig. 3". Thus, for KBA approaching zero, less of B
phase space lies inside the A phase space, while for it ap-
proaching !and perhaps exceeding" unity, we conclude that
the B phase space is a wholly contained subset of the A phase
space. A FEP calculation A→B can give accurate results
only if KBA is not too close to zero. Analogous statements
apply to KAB.

B. Relative-entropy measurements

An alternative metric can be defined using ideas from
information theory,15 which provides a definition for the
“distance” between two distributions. Our fundamental inter-
est is in the distributions defined on phase space, pA!$" and
pB!$", which are the probability densities for phase-space
points !$!#" sampled in the A and B systems, respectively.
Information theory defines the relative entropy, actually two
such quantities, which we designate sA and sB

sA = %
#

d$pA!$"ln* pA!$"
pB!$"+ ,

!5"

sB = %
#

d$pB!$"ln* pB!$"
pA!$"+ .

Although simply expressed and similar in form to the Gibbs
entropy formula, such quantities are not often encountered in
a statistical-mechanics context.16

It is not convenient to measure the systems’ multidimen-
sional phase distributions. Fortunately these relative entro-
pies can be expressed in terms of more accessible quantities.
Given that pA!$"=e−!UA!$" /QA, where QA is the partition
function of the A system, and likewise for system B, Eq. !5"
can be expressed as

sA = '!W(A − !"F ,
!6"

sB = − '!W(B + !"F ,

for which the difference on the right of each equation is the
dissipated work. It is also easy to show that these exact quan-
tities are obtained when the relative-entropy metric is defined
in terms of the work distributions:

sA =% dWpA!W"ln* pA!W"
pB!W"+ ,

!7"

sB =% dWpB!W"ln* pB!W"
pA!W"+ ,

from which Eq. !6" follows upon introducing the relation10

pA!W"e−!W= pB!W"e−!"F.
The quantities sA and sB are non-negative, and equal to

zero only when the two distributions are identical. Larger
values of sA and sB mean more difference or more distance
between the two distributions, corresponding to an increas-
ing degree of nonoverlap of the two systems and indicating
larger energetic barriers to free-energy sampling. As the ratio
of sA to sB increases, the two systems’ phase spaces become
more and more asymmetric, and entropic barriers will domi-
nate the samplings. Here the system with the smaller value of
s has a smaller important phase space, and will be a subset of
the other as long as the values are not both very large. As the
value of sA approaches the value of sB, the two distributions
become more and more symmetric, which will result in the
symmetric bias for FEP calculations performed in the two
directions.

Thus knowledge of the dissipated work is sufficient to
determine the relative entropies, and from them the nature of
the phase-space overlap. Unfortunately the dissipated work
requires knowledge of the free-energy difference that is the
aim of the calculation. We must consider the usefulness of
this overlap measure with consideration to the fact that its
measurement is subject to some degree of inaccuracy.

IV. OVERLAP MEASURES AND BIAS IN
FREE-ENERGY CALCULATIONS

We have no rigorous connection between the overlap
measures introduced above, and the inaccuracy that should

FIG. 3. Illustration of cases that might be observed for the total-energy
distributions, which correspond to three boundary values examined by the
overlap integral method. The method is based on the comparison of the
distributions 'A(A and 'A(B, or 'B(B and 'B(A.
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be expected in a free-energy calculation applied to a given
system. So to employ these measures for practical purposes,
we must calibrate and test them in some simple applications.
To this end we examine the multiharmonic model, which is
defined as a system of N independent particles in a harmonic
potential.14

Specifically we define the systems A and B according to
the potential-energy functions,

UA = ,
i=1

N

)Axi
2,

!8"

UB = ,
i=1

N

)B!xi − x0"2,

where xi is the coordinate of particle i, and x0, )A, and )B are
model parameters. This is a simple but nontrivial system for
which many properties can be derived analytically. In par-
ticular, the free-energy difference is independent of x0 :"F
=1/2NkT ln!)B /)A", and the relative entropies are

sA = −
1
2

N ln R + NRX +
1
2

N!R − 1" ,

!9"

sB =
1
2

N ln R + NX +
1
2

N!1/R − 1" ,

where R))B /)A and X=!)Ax0
2. In previous work14 we in-

troduced the “neglected-tail model” for the FEP bias and
showed that it gives a very good description of the inaccu-
racy of a FEP calculation for the multiharmonic model. Here
we choose to study nine cases of the model, for which the
parameters and properties are listed in Table I. The choices
span the range of systems depicted in Fig. 1.

The dimension of the phase space for this one-
dimensional system is equal to N, but because the particles
are uncorrelated we can get a picture of the A-B phase-space
relation by plotting the distributions for a single-particle co-
ordinate. This is done in Fig. 4.

Distributions in the first row are symmetric. In subse-
quent rows the two distributions become less symmetric,
with the B-system distribution becoming more and more nar-
row than the A-system distribution. From left to right, the
columns arrange systems to increasing separation of the A
and B phase spaces.

Figure 5 shows the work distributions that would be ex-
pected for FEP calculations performed in the two directions
for each of the nine system pairs; these distributions can be
calculated using analytic formulas developed previously.14

The layout of the plots corresponds to those in Fig. 4 and
give the relative-entropy and overlap integral measurements
in Table I. These overlap measurements are consistent with
the phase-space overlap relations illustrated in Fig. 4.

Now we calculate the free energies for these nine cases
from two directions A→B and B→A, and plot the bias as a
function of the number of samplings M in Fig. 6. Data were
obtained by Monte Carlo simulation of the multiharmonic

TABLE I. Parameter sets for the systems of N independent particles in a
harmonic potential. In all cases, N=10, )A=1, and !=1.

Cases )B /)A x0 !"F sA sB KAB KBA

a 1 0 0 0 0 1 1
b 1 1 0 10 10 0.05 0.05
c 1 3 0 90 90 0 0
d 5 0 8.05 12 4 0.02 1.98
e 5 1 8.05 62 14 10−5 0.06
f 5 3 8.05 462 94 0 0
g 20 0 14.98 80 10 5*10−5 2
h 20 1 14.98 280 20 0 0.06
i 20 2 14.98 880 50 0 0

FIG. 4. One-particle phase-space distributions for the multiharmonic model,
given for the nine cases listed in Table I. The solid and dashed lines are for
a particle influenced by the A and B potentials, respectively, as defined in
Eq. !8". Ordinate scales are such that the curves are normalized to unity.

FIG. 5. Work distributions expected for free-energy perturbations applied to
the multiharmonic model for the nine cases listed in Table I #work is always
zero for case !a" and is not shown$. The solid and dashed lines are for
perturbations A→B and B→A, respectively. Ordinate scales are such that
the curves are normalized to unity. The insets provide a semiquantitative
illustration !roughly corresponding to the KAB values" of the A-B phase-
space relation, in the manner shown in Fig. 1. The A-important space is
represented by the larger circle, and the B-important space by the smaller
one !or by an x if the space is very small". The relative size and amount of
overlap of the circles are indicative of the relation of the important phase
spaces.
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system, performing M FEP measurements to obtain the free
energy. This free-energy measurement was performed 8000
times for each case, and the bias is given as the average of
these measurements, minus the correct free energy. In the
first row of the figure, the bias is symmetric with respect to
the perturbation direction—the sign of the inaccuracy
changes, but the magnitude of the error does not. This is
easily understood from the symmetry of the phase-space and
work distributions. Moving to the second and third rows we
see progressively increasing asymmetry in the bias with re-
spect to the perturbation direction. This reflects the relative
effects of energetic versus entropic barriers, wherein the bias
in one direction owes more to entropic barriers and is more
easily overcome by added sampling, while in the other direc-
tion the barrier is increasingly energetic and the opposite
holds.

Moving from left to right in the columns, we see the
effect on the calculations of increasing energetic barriers,
which are introduced as the important phase spaces move
apart. The qualitative picture does not change across a row,
but the magnitude of the bias increases considerably !taking
note of the scale of the ordinate in each plot".

In our study of bias in Gaussian-distributed work
distributions,13 we proposed the following quantity as an ef-
fective measure of the amount of sampling:

+ =-WL* 1
2,

!M − 1"2+ − !- . !10"

Here WL!x" is the Lambert W function, defined as the solu-
tion for w in x=wew. M is the number of work trials used for
the free-energy calculation, and - is the standard deviation
of the Gaussian work distribution. In our previous study13 we
showed that when plotted as a function of this quantity the

dependence of the free-energy bias on the amount of sam-
pling collapses onto a single curve, such that the bias can be
considered unimportant for + approximately equal to !or
greater than" zero. This can be a very useful result, in that it
can be applied to tell us whether a given amount of sampling
is sufficient to render an accurate free energy. The outcome
has two limitations. First, application of this heuristic re-
quires !through -" knowledge of the free energy being mea-
sured, and inaccuracies in the measured free energy could
potentially invalidate the application of a heuristic based on
the value of +. Fortunately we could demonstrate that any
expected free-energy bias would not be sufficient to cause +
to take on a value that would indicate sufficient sampling
when sampling was, in fact, insufficient. In this sense the
heuristic is “fail-safe.” More limiting then is the restriction
of this result to Gaussian work distributions, for which the
bias is symmetric. We now consider how to extend the defi-
nition of + to handle the more general case. We find that the
relative entropies sA and sB to be appropriate quantities to use
for this extension.

Figure 6 clearly shows that the amount of sampling
needed to obtain an accurate free energy depends upon the
direction of the perturbation, A→B vs B→A, so the gener-
alized definition of the scaled sampling amount must reflect
this asymmetry, and reduce to a direction-independent form
in the Gaussian-work limit. The quantity - in Eq. !10" is
related to the dissipated work, as are sA and sB shown in Eq.
!6". Indeed, in the Gaussian-work limit sA=sB= !!-"2 /2,
suggesting that we can obtain a direction-dependent gener-
alization of + by substituting for - in Eq. !10" a term in-
volving sA or sB. We can obtain further guidance by consid-
ering earlier studies17 that examined highly asymmetric FEP
calculations on systems obeying the phase-space subset rela-

FIG. 6. Expected bias in the free energy for the nine
cases of the multiharmonic model listed in Table I. Bias
is that expected for FEP calculations in the directions
A→B !upper curve in each figure" and B→A !lower
curve". Bias in "F !in units of kT" is plotted against the
number of perturbation samples M. The inset illustra-
tions are as described in Fig. 5.
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tion. There it was shown that the group M exp!"S /k" pro-
vided a good characterization of the amount of sampling,
where "S=SB−SA(0 is the !thermodynamic" entropy differ-
ence between the B and A systems, and the perturbation is
performed in the insertion direction A→B. For the types of
systems examined in Ref. 17, "S.−sB. If we note also that
for large x, WL!x"/ ln x, we find that to connect to the
present analysis, the generalized definition of + should de-
pend on the group WL /sB.

A definition of + that is consistent with these two spe-
cial cases !viz., Gaussian work and phase-space subset" is

+A→B =-sA

sB
WL* 1

2,
!M − 1"2+ − -2sA,

!11"

+B→A =-sB

sA
WL* 1

2,
!M − 1"2+ − -2sB.

In Fig. 7 we plot the inaccuracies observed for the nine mul-
tiharmonic test cases introduced above, considering pertur-
bations in both directions. We see that the data presented in
Fig. 6 to a very good approximation all collapse onto a single
curve. The bias drops off steeply as the sampling parameter
+ goes through zero, indicating that the sign of + provides a
good indicator of sufficient sampling. We note that a factor
of sA

1/2 !or sB
1/2 for +B→A" could be separated out of the defi-

nition, and the sign of + will be determined by the remaining
term. However, except for the drop-off near zero on the ab-
scissa, this term does not exhibit the apparently universal
form demonstrated when using Eq. !11", so it is not preferred
except in cases where sA is effectively infinite !such as for
hard-sphere insertion".

Finally, we consider the practical question of whether
bias in the free energy could lead to inaccuracy in + suffi-
cient to give a false indicator of inaccuracy. If the perturba-
tion is performed in the direction A→B, insufficient sam-
pling will yield a biased free energy that overestimates the
true free energy !cf. Fig. 6". Thus, according to Eq. !6" sB

will also be overestimated !provided that '!W(B is measured
accurately, which can be reasonably assumed". After factor-
ing out sA

1/2, the sign of +A→B is determined by -WL /sB

−-2. An overestimate of sB will tend to make this difference
more negative, and therefore will not promote a false con-
clusion of sufficient sampling. A similar argument can be
made for perturbation in the reverse direction. Thus we con-
clude that the rule +.0 provides a heuristic for sufficient
sampling that is fail-safe with respect to the influence on it of
bias in the free energy.

As a further demonstration of the fail-safe nature of the
heuristic, we define

sA,A→B = '!W(A − !!"F + BA→B" ,

sB,A→B = − '!W(B + !!"F + BA→B" ,
!12"

sA,B→A = '!W(A − !!"F + BB→A" ,

sB,B→A = − '!W(B + !!"F + BB→A" .

Here BA→B and BB→A are the corresponding bias obtained
when sampling system A and system B, respectively. The
“apparent” relative entropies given by Eq. !12" are not the
true relative entropies, but are meant to describe the values
one would compute when using the simulation data itself,
and thus include the effects of any bias in the free energy.
Similar to our previous study,13 we define the apparent scaled
sampling amount

+A→B,app =-sA,A→B

sB,A→B
WL* 1

2,
!M − 1"2+ − -2sA,A→B,

!13"

+B→A,app =-sB,B→A

sA,B→A
WL* 1

2,
!M − 1"2+ − -2sB,B→A.

We plot in Fig. 8 the bias observed for the nine multihar-
monic test cases as a function of the apparent + value. There
we see a behavior that is similar to that we observed13 for the
symmetric-bias special case in which the work distribution is

FIG. 7. Expected bias !in absolute value" in the free energy for the nine
cases of the multiharmonic model listed in Table I, plotted against the scaled
sampling amount defined in Eq. !11". All results presented in Fig. 6 are
given here, including both A→B and B→A directions.

FIG. 8. The same expected biases in Fig. 7 are plotted against the apparent
scaled sampling amount +app defined in Eq. !13".
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Gaussian. The important feature of those results also seen
here: application of the bias-detection heuristic using the
most likely (biased) free energy itself, does not give a false
indication of a bias-free result !+.0" when bias is, in fact,
present; the apparent + does not cross zero except where the
bias becomes small. One should note though that in the limit
of very small sampling the apparent + approaches zero, and
one should take care not to construe this case as giving evi-
dence of an unbiased result. The situation arises only for M
less than about 4, and a signal for it is the rapid decrease of
the apparent + with added sampling. Application of the bias-
detection heuristic to identify a bias-free result should of
course take note that sampling is not in this regime.

V. CONCLUSIONS

We have presented two methods to quantify overlap of
the important phase spaces of a pair of systems, and we have
shown how one of these measures can be used in a heuristic
to detect bias in free energies calculated by molecular simu-
lation. Although development has been formulated in terms
of phase-space overlap, the relative-entropy metrics can be
expressed purely in terms of the work distributions. Conse-
quently we expect the heuristic to apply both to single-stage
FEP calculations as well as to more general NEW calcula-
tions.

To summarize, the “recipe” for determining if a work-
based free-energy measurement is free of bias is as follows.

• Perform M nonequilibrium work measurements, col-
lecting work values 0Wi,A→B1; do the same in the direc-
tion B→A, collecting M work values 0Wi,B→A1 !M may
be different for the two directions, but to simplify nota-
tion we will take them to be equal".

• Evaluate the average work, W̄A→B=M−1,i=1
M Wi,A→B, and

likewise for B→A.

• Evaluate the free-energy difference, !"FA→B
=−ln#M−1,i=1

M exp!−!Wi,A→B"$, and !"FB→A
=ln#M−1,i=1

M exp!−!Wi,B→A"$ !for both cases "F is de-
fined FB−FA and Wi is defined as described in Eq. !1",
for configuration i".

• Evaluate sA=!W̄A→B−!"FB→A, and sB=−!W̄B→A
+"FA→B. In principle either free-energy estimate can be
employed in the calculation of sA and sB, but use of the
indicated estimates is recommended to guard against
adverse effects of free-energy bias on the heuristic.

• Evaluate +A→B and +B→A according to Eq. !11". For
each case, a positive value indicates that the corre-
sponding free-energy estimate is free of bias; otherwise
more sampling is needed. Of course, an accurate result
from only one direction is required.

One could compute the + values using the procedure
outlined in Eqs. !12" and !13", but we find that the simpler
approach outlined here for evaluating sA and sB has some
advantage.

Application of the heuristic highlights the necessity to
obtain work results from both directions to ensure that the

free energy is measured accurately by at least one of them.
Careful practitioners have long been aware that the accuracy
of a NEW free-energy calculation cannot be ascertained
without information from calculations performed in the “re-
verse” direction. However, the common practice has been
either to average differing results, or to increase sampling
until results from the two directions agree. Examples from
the multiharmonic model clearly show that the former prac-
tice is still highly prone to error, while the latter can be very
inefficient. With the proposed heuristic, one can determine
which result from the two directions is more accurate, and
whether one is sufficiently accurate even though it disagrees
with the other.

As a practical note, it is important to remember that
another manifestation of inadequate sampling is poor preci-
sion. It is possible for a fluctuation in an average to result in
a positive value of +, falsely indicating a bias-free result.
Thus a conclusion about whether + is non-negative should
be made with consideration of its confidence limits. These
are easily gauged in the usual manner, examining the scatter
in several independent measurements.

Also one should remember that the heuristic +.0 is
only a rule of thumb, and to be safe one should attempt to
apply sampling sufficient for + to be well above zero. Indeed
our study of Gaussian work suggested +.0.5 as an appro-
priate rule, showing that there is some slack in the specifica-
tion. The heuristic is not derived as a rigorous result, but it
has now been demonstrated to be effective for a wide variety
of model cases. As it is applied more in practice, we can
develop a clearer picture of its effectiveness for a greater
variety of situations, and in what manner it can be best used.

The present study has considered only single-stage NEW
calculations. In many cases accurate results cannot be ob-
tained from single-stage calculations for any feasible amount
of sampling, in either direction. In these cases multistage
methods are needed. Multistage methods are of course built
from single-stage calculations, and the accuracy of each
stage of the calculation can !and should" be evaluated using
these methods. Moreover, the overlap relations can be useful
in other ways in this context. In subsequent work we will
consider how knowledge of phase-space overlap can be ap-
plied to help choose an appropriate staging method. Overlap
relations may also prove useful to the design of pathways for
free-energy calculations.
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